精英家教网 > 高中数学 > 题目详情
2.下列不等式中,解集为R的是(  )
A.x2+4x+4>0B.|x|>0C.x2>-xD.x2-x+$\frac{1}{4}$≥0

分析 分别求出选项中不等式的解集,即可得出结论.

解答 解:对于A,不等式x2+4x+4>0的解集是{x|x≠-2},不满足题意;
对于B,不等式|x|>0的解集是{x|x≠0},不满足题意;
对于C,不等式x2>-x可化为x2+x>0,其解集是{x|x<-1或x>0},不满足题意;
对于D,不等式x2-x+$\frac{1}{4}$≥0可化为${(x-\frac{1}{2})}^{2}$≥0,其解集是R,满足题意.
故选:D.

点评 本题考查了一元二次不等式的解法与应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.一盒中装有5个产品,其中有3个一等品,2个二等品,从中不放回地取出产品,每次1个,取两次.求:
(1)第二次取得一等品的概率;
(2)已知第二次取得一等品的条件下,第一次取得的是二等品的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在直角坐标系中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系.已知点A的极坐标为($\sqrt{2}$,$\frac{π}{4}$),直线l的极坐标方程为ρcos(θ-$\frac{π}{4}$)=a,且点A在直线l上.
(1)求a的值及直线l的直角坐标方程;
(2)圆C的极坐标方程为ρ=2cosα,试判断直线l与圆C的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=|x-a|-$\frac{3}{x}$+a-2有且仅有三个零点,且它们成等差数列,则实数a的取值集合为{$\frac{5+3\sqrt{33}}{8}$,-$\frac{9}{5}$ }.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知P是椭圆$\frac{x^2}{16}$+$\frac{y^2}{9}$=1上任意一点,则点P到直线x+y-7=0的距离最大值为(  )
A.6$\sqrt{2}$B.4$\sqrt{2}$C.6$\sqrt{3}$D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.等差数列{an}中,若a3=7,a7=3,则a10=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.抛物线C:y2=12x,则抛物线的焦点坐标为(  )
A.(3,0)B.(-3,0)C.(0,3)D.(0,-3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=2ex-ax-2(x∈R,a∈R).
(1)当a=1时,求曲线y=f(x)在x=1处的切线方程;
(2)当x≥0时,若不等式f(x)≥0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设函数f(x)=(1-ax)ln(1+x)-x,其中a是实数;
(1)当0≤x≤1时,关于x的不等式f'(x)≥0恒成立,求实数a的取值范围;
(2)求证:e>($\frac{1001}{1000}$)1000.4

查看答案和解析>>

同步练习册答案