精英家教网 > 高中数学 > 题目详情
14.抛物线C:y2=12x,则抛物线的焦点坐标为(  )
A.(3,0)B.(-3,0)C.(0,3)D.(0,-3)

分析 确定抛物线的焦点位置,进而可确定抛物线的焦点坐标.

解答 解:抛物线y2=12x的焦点在x轴上,且p=6,
∴$\frac{p}{2}$=3,
∴抛物线y2=12x的焦点坐标为(3,0).
故选:A.

点评 本题考查抛物线的性质,解题的关键是定型定位,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知数列{an}中,a1=1,an+1=2an+1.
(Ⅰ)求a2,a3,a4,a5
(Ⅱ)猜想an的表达式,并用数学归纳法加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设常数a>0,λ∈R,函数f(x)=x2(x-a)-λ(x+a)3,若函数f(x)恰有两个零点,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列不等式中,解集为R的是(  )
A.x2+4x+4>0B.|x|>0C.x2>-xD.x2-x+$\frac{1}{4}$≥0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知正方体的棱长为4,则它的内切球的表面积为(  )
A.B.C.D.16π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知等差数列{an}的前n项和为Sn,且a1,$\sqrt{6}$a1,S5成等比数列,则$\frac{{{S_{10}}}}{S_5}$=$\frac{29}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=x3-ax2-3x.
(1)若a=4时,求f(x)在x∈[1,4]上的最大值和最小值;
(2)若f(x)在x∈[2,+∞]上是增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=sinx-x,则关于a的不等式f(a-2)+f(a2-4)>0的解是-3<a<2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知圆柱的底面直径和高都等于球的直径,则球的表面积与圆柱的表面积之比是2:3.

查看答案和解析>>

同步练习册答案