精英家教网 > 高中数学 > 题目详情
19.已知函数f(x)=log2||x|-1|.
(1)作出函数f(x)的大致图象;
(2)指出函数f(x)的奇偶性、单调区间及零点.

分析 (1)求出函数的定义域,化简函数的解析式,然后作出函数f(x)的大致图象;
(2)利用函数的图象,指出函数f(x)的奇偶性、单调区间及零点.

解答 解:函数f(x)=log2||x|-1|的定义域为:{x|x≠±1,x∈R}.
函数f(x)=log2||x|-1|=$\left\{\begin{array}{l}{lo{g}_{2}(x-1),x>1}\\{lo{g}_{2}(1-x),0<x<1}\\{lo{g}_{2}(x+1),-1<x<0}\\{lo{g}_{2}(-x-1),x<-1}\end{array}\right.$,x=0时f(x)=0,
函数的图象如图:
(2)函数是偶函数,单调增区间(-1,0),(1,+∞);单调减区间为:(-∞,-1),(0,1);
零点为:0,-2,2.

点评 本题考查函数的图象的画法,函数的奇偶性以及函数的单调性零点的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.设集合A={-1,1},集合B={x|ax=1,a∈R},则使得B⊆A的a的所有取值构成的集合是(  )
A.{0,1}B.{0,-1}C.{1,-1}D.{-1,0,1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知不等式2x+1>m(x2+1).若对于所有的实数x不等式恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.函数f(x)=|x2-4|-a恰有两个零点,则实数a的取值范围为a=0或a>4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设x,y∈R,a>1,b>1,若ax=by=3,a+b=6,则$\frac{1}{x}$+$\frac{1}{y}$的最大值为(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若集合M={x|x2-2x<0},N={x||x|>1},则M∩N=(1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.曲线C是平面内到直线l1:x=-1和直线l2:y=1的距离之积等于常数k2(k>0)的点的轨迹,下列四个结论:
①曲线C过点(-1,1);
②曲线C关于点(-1,1)成中心对称;
③若点P在曲线C上,点A、B分别在直线l1、l2上,则|PA|+|PB|不小于2k;
④设P0为曲线C上任意一点,则点P0关于直线l1:x=-1,点(-1,1)及直线f(x)对称的点分别为P1、P2、P3,则四边形P0P1P2P3的面积为定值4k2;其中,
所有正确结论的序号是②③④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知x、y满足曲线方程${x^2}+\frac{1}{y^2}=2$,则x2+y2的取值范围是[$\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知双曲线经过点M($\sqrt{6},\sqrt{6}$).
(1)如果此双曲线的渐近线为$y=±\sqrt{2}x$,求双曲线的标准方程;
(2)如果此双曲线的离心率e=2,求双曲线的标准方程.

查看答案和解析>>

同步练习册答案