精英家教网 > 高中数学 > 题目详情
10.已知不等式2x+1>m(x2+1).若对于所有的实数x不等式恒成立,求m的取值范围.

分析 原不等式等价于mx2-2x+(m-1)<0,对所有实数x恒成立,得$\left\{\begin{array}{l}{m<0}\\{△<0}\end{array}\right.$,求出m的取值范围即可.

解答 解:不等式2x+1>m(x2+1)等价于mx2-2x+(m-1)<0,
若对所有实数x恒成立,当且仅当m<0,
且△=4-4m(m-1)<0,
化简得$\left\{\begin{array}{l}{m<0}\\{{m}^{2}-m-1>0}\end{array}\right.$,
解得m<$\frac{1-\sqrt{5}}{2}$,
所以m的取值范围是{m|m<$\frac{1-\sqrt{5}}{2}$}.

点评 本题考查了不等式恒成立的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.在△ABC中,A,B,C的对边分别为a、b、c,$C=\frac{π}{3},b=8$,△ABC的面积为$10\sqrt{3}$.
(Ⅰ)求c的值;
(Ⅱ)求cos(B-C)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.过双曲线$\frac{x^2}{3}-{y^2}=1$右焦点的直线l被圆x2+(y+2)2=9截得弦长最长时,则直线l的方程为(  )
A.x-y+2=0B.x+y-2=0C.x-y-2=0D.x+y+2=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=|lnx|,若在区间$[\frac{1}{3},3]$内,曲线g(x)=f(x)-ax与x轴有三个不同的交点,则实数a的取值范围是(  )
A.$[\frac{ln3}{3},\frac{1}{e})$B.$[\frac{ln3}{3},\frac{1}{2e})$C.$(0,\frac{1}{e})$D.$(0,\frac{1}{2e})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知A、B、C相互独立,如果P(AB)=$\frac{1}{6}$,$P({\overline BC})=\frac{1}{8}$,$P({AB\overline C})=\frac{1}{8}$,$P({\overline AB})$=$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.“4<K<9”是“方程$\frac{{x}^{2}}{9-k}$+$\frac{{y}^{2}}{k-4}$=1表示的图形为椭圆”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.不等式$\frac{3x+4}{x-2}$>4的解集是(2,12).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=log2||x|-1|.
(1)作出函数f(x)的大致图象;
(2)指出函数f(x)的奇偶性、单调区间及零点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图,在棱长为1的正方体ABCD-A1B1C1D1中,点P在截面A1DB上,则线段AP的最小值等于(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

同步练习册答案