精英家教网 > 高中数学 > 题目详情
5.已知A、B、C相互独立,如果P(AB)=$\frac{1}{6}$,$P({\overline BC})=\frac{1}{8}$,$P({AB\overline C})=\frac{1}{8}$,$P({\overline AB})$=$\frac{1}{3}$.

分析 由A、B、C相互独立,如果P(AB)=$\frac{1}{6}$,$P({\overline BC})=\frac{1}{8}$,$P({AB\overline C})=\frac{1}{8}$,列出方程组求出P(A)=$\frac{1}{3}$,P(B)=$\frac{1}{2}$,P(C)=$\frac{1}{4}$,由此能求出$P({\overline AB})$.

解答 解:∵A、B、C相互独立,P(AB)=$\frac{1}{6}$,$P({\overline BC})=\frac{1}{8}$,$P({AB\overline C})=\frac{1}{8}$,
∴$\left\{\begin{array}{l}{P(AB)=P(A)•P(B)=\frac{1}{6}}\\{P(\overline{B}C)=(1-P(B))•P(C)=\frac{1}{8}}\\{P(AB\overline{C})=P(AB)•(1-P(C))=\frac{1}{8}}\end{array}\right.$,
解得P(A)=$\frac{1}{3}$,P(B)=$\frac{1}{2}$,P(C)=$\frac{1}{4}$,
∴$P({\overline AB})$=(1-P(A))•P(B)=$\frac{2}{3}×\frac{1}{2}=\frac{1}{3}$.
故答案为:$\frac{1}{3}$.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意相互独立事件概率乘法公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.将函数$y=2sin(2x+\frac{π}{6})$的图象向右平移$\frac{1}{4}$个周期后,所得图象对应的函数为f(x),则函数f(x)的单
调递增区间(  )
A.$[kπ-\frac{π}{12},kπ+\frac{5π}{12}](k∈Z)$B.$[kπ+\frac{5π}{12},kπ+\frac{11π}{12}](k∈Z)$
C.$[kπ-\frac{5π}{24},kπ+\frac{7π}{24}](k∈Z)$D.$[kπ+\frac{7π}{24},kπ+\frac{19π}{24}](k∈Z)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.对于命题p:?x∈R,使得x2+x+1<0,则¬p是(  )
A.¬p:?x∈R,x2+x+1>0B.¬p:?x∈R,x2+x+1≠0
C.¬p:?x∈R,x2+x+1≥0D.¬p:?x∈R,x2+x+1<0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设i为虚数单位,复数$\overline{i(1+i)}$的虚部为(  )
A.-1B.1C.-iD.i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知非直角△ABC中,内角A,B,C的对边分别是a,b,c,其中c=1,又$C=\frac{π}{3}$,若sinC+sin(A-B)=3sin2B,则△ABC的面积为$\frac{{3\sqrt{3}}}{28}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知不等式2x+1>m(x2+1).若对于所有的实数x不等式恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知A,B,C三点在球O的球面上,AB=BC=CA=3,且球心O到平面ABC的距离等于球半径的$\frac{1}{3}$,则球O的表面积为(  )
A.36πB.C.$\frac{27}{4}$πD.$\frac{27}{2}$π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设x,y∈R,a>1,b>1,若ax=by=3,a+b=6,则$\frac{1}{x}$+$\frac{1}{y}$的最大值为(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,椭圆x2+$\frac{y^2}{4}$=1的左、右顶点分别为A、B,双曲线Γ以A、B为顶点,焦距
为2$\sqrt{5}$,点P是Γ上在第一象限内的动点,直线AP与椭圆相交于另一点Q,线段AQ的中点为M,记直线AP的斜率为k,O为坐标原点.
(1)求双曲线Γ的方程;
(2)求点M的纵坐标yM的取值范围;
(3)是否存在定直线l,使得直线BP与直线OM关于直线l对称?若存在,求直线l方程,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案