精英家教网 > 高中数学 > 题目详情
19.设集合 A={ x|-3≤2x-1≤3},集合 B为函数 y=lg( x-1)的定义域,则 A∩B=(  )
A.(1,2)B.[1,2]C.[1,2)D.(1,2]

分析 求出A中不等式的解集确定出A,求出B中函数的定义域确定出B,找出两集合的交集即可.

解答 解:由A中不等式变形得:-2≤2x≤4,即-1≤x≤2,
∴A=[-1,2],
由B中y=lg(x-1),得到x-1>0,即x>1,
∴B=(1,+∞),
则A∩B=(1,2],
故选:D.

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.若幂函数f(x)=xa及其导函数f′(x)在区间(0,+∞)上的单调性一致(同为增函数或同为减函数),则实数a的取值范围(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设函数f(x)=3x2-2mx-1.
(1)如果不等式f(x)≥|x|-$\frac{7}{4}$对一切实数x恒成立,求实数m的取值范围;
(2)定义g(x)=$\left\{\begin{array}{l}{|f(x)|,x≥0}\\{f(x),x<0}\end{array}\right.$,求函数g(x)在[-1,1]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=$\left\{\begin{array}{l}{-\sqrt{x},x≥0}\\{(x-\frac{1}{x})^{4},x<0}\end{array}\right.$,则f[f(2)]=(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知定义在R上的奇函数f(x)满足f($\frac{3}{2}$-x)=f(x),f(-2)=-3,数列{an}的前n项和为Sn,且a1=-1,Sn=2an+n(n∈N*),则f(a5)+f(a6)=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设变量x,y满足约束条件$\left\{\begin{array}{l}{x+y≥3}\\{x-y≥-1}\\{2x-y≤3}\end{array}\right.$,则目标函数z=y-ax取的最小值不唯一,则实数a的值为(  )
A.-1B.2C.1D.-1或2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数y=3tanωx+1(ω>0)在(-$\frac{π}{4}$,$\frac{π}{4}$)内是增函数,则ω的取值范围是(0,2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在正方体ABCD-A1B1C1D1中,E是棱DD1的中点.
(1)求直线BE与平面ABB1A1所成角的大小(结果用反三角函数表示)
(2)在棱C1D1上是否存在一点F,使得BF1∥平面A1BE,若存在,指明点F的位置,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知A={x|x=3k-1,k∈Z},则下列表示正确的是(  )
A.-1∉AB.-11∈AC.3k2-1∈AD.-34∉A

查看答案和解析>>

同步练习册答案