精英家教网 > 高中数学 > 题目详情
2.$\frac{2cos10°-sin20°}{sin70°}$=$\sqrt{3}$.

分析 利用两角和差的余弦公式,进行化简即可.

解答 解:原式=$\frac{2cos(30°-20°)-sin20°}{cos20°}$=$\frac{2(\frac{\sqrt{3}}{2}cos20°+\frac{1}{2}sin20°)-sin20°}{cos20°}$
=$\frac{\sqrt{3}cos20°+sin20°-sin20°}{cos20°}$=$\frac{\sqrt{3}cos20°}{cos20°}$=$\sqrt{3}$,
故答案为:$\sqrt{3}$.

点评 本题主要考查三角函数值的化简,利用两角和差的余弦公式是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.在△ABC中,已知(a2+b2-c22=2(ab)2,则C等于(  )
A.30°B.45°C.60°D.45°或135°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在四棱锥P-ABCD中,底面ABCD是正方形,△PAD是正三角形,平面PAD⊥平面ABCD,M和N分别是AD和BC的中点.
(1)求证:PM⊥MN;
(2)求证:平面PMN⊥平面PBC;
(3)在PA上是否存在点Q,使得平面QMN∥平面PCD?若存在求出Q点位置,并证明;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.若关于x的方程x2-x+a=0和x2-x+b=0(a≠b)的4个实数根可以组成首项为$\frac{1}{4}$的等差数列,求|a-b|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在△ABC中,a,b,c分别是角A、B、C的对边,且sin2(${\frac{π-A}{2}}$)=$\frac{b+c}{2c}$,则△ABC的形状是(  )
A.直角三角形B.等腰三角形或直角三角形
C.正三角形D.等腰直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=lnx-mx,m∈R
(Ⅰ)求f(x)的单调区间;
(Ⅱ)若f(x)≤$\frac{m-1}{x}$-2m+1在[1,+∞)上恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在四棱锥P-ABCD中,PA⊥平面ABCD,△ABC是正三角形,AC与BD的交点M恰好是AC中点,又PA=AB=4,∠CDA=120°,点N在线段PB上,且PN=$\sqrt{2}$
(Ⅰ)求证:MN∥平面PDC;
(Ⅱ)求二面角A-PC-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=(2a+2)lnx+2ax2+5.
(1)讨论函数f(x)的单调性;
(2)设a<-1,若对任意不相等的正数x1,x2,恒有|$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$|≥8,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.直三棱柱ABC-A1B1C1中,∠B1BC1=30°,AB=BC=CA,M、N分别是棱AA1、A1B1中点,则MN与AC所成的角的余弦值为(  )
A.$\frac{1}{4}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{6}}{3}$D.$\frac{1}{3}$

查看答案和解析>>

同步练习册答案