精英家教网 > 高中数学 > 题目详情
18.设曲线y=ex-x及直线y=0所围成的图形为区域D,不等式组$\left\{\begin{array}{l}-1≤x≤1\\ 0≤y≤2\end{array}\right.$所确定的区域为E,在区域E内随机取一点,则该点落在区域D内的概率为(  )
A.$\frac{{{e^2}-2e-1}}{4e}$B.$\frac{{{e^2}-2e}}{4e}$C.$\frac{{{e^2}-e-1}}{4e}$D.$\frac{{{e^2}-1}}{4e}$

分析 首先画出图形,利用定积分求出阴影部分面积,然后利用面积比求概率.

解答 解:由题意y=ex-x的图象以及不等式组$\left\{\begin{array}{l}-1≤x≤1\\ 0≤y≤2\end{array}\right.$所确定的区域为E如图:
区域E的面积为边长为2 的正方形的面积为4,
在此范围内区域D的面积为${∫}_{-1}^{1}({e}^{x}-x)dx=({e}^{x}-\frac{1}{2}{x}^{2}){|}_{-1}^{1}=e-\frac{1}{e}$,
由几何概型的公式得到所求概率为$\frac{e-\frac{1}{e}}{4}=\frac{{e}^{2}-1}{4e}$;
故选:D.

点评 本题主要考查线性规划的基本应用,利用z的几何意义是解决线性规划问题的关键,注意利用数形结合来解决.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].则这200名学生中每周的自习时间不低于25小时的人数为(  )
A.30B.60C.80D.120

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设等差数列{an}的前n项和为Sn,若a4,a6是方程x2-18x+p=0的两根,那么S9=(  )
A.9B.81C.5D.45

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若实数x,y满足不等式组$\left\{\begin{array}{l}{x+3y-3≤0}\\{x+y+1≥0}\\{y≥-1}\end{array}\right.$,则z=2|x|+y的最大植为11.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设xy>0,则$({x^2}+\frac{4}{y^2})({y^2}+\frac{1}{x^2})$的最小值为(  )
A.-9B.9C.10D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,长方体ABCD-A1B1C1D1中,O是BD的中点,AA1=2AB=2BC=4.
(1)求证:C1O∥平面AB1D1
(2)点E在侧棱AA1上,求四棱锥E-BB1D1D的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知x>1,则函数$y=\frac{{{x^2}+x+1}}{x-1}$的最小值为$3+2\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若变量x,y满足条件$\left\{{\begin{array}{l}{{x^2}+{y^2}-2x-2y+1≤0}\\{|x-1|-y≤0}\end{array}}\right.$,则z=2x+y最小值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知F是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点,A,B分别为其左、右顶点.O为坐标原点,D为其上一点,DF⊥x轴.过点A的直线l与线段DF交于点E,与y轴交于点M,直线BE与y轴交于点N,若3|OM|=2|ON|,则双曲线的离心率为(  )
A.3B.4C.5D.6

查看答案和解析>>

同步练习册答案