精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
2x+2
-
1-x
,x∈[0,1],求f(x)的最大值与最小值.
考点:函数的最值及其几何意义,函数单调性的性质
专题:计算题,函数的性质及应用
分析:根据已知,先判断函数f(x)在[0,1]上的单调性,从而可求出最值.
解答: 解:设0≤a<b≤1
f(b)-f(a)=(
2b+2
-
1-b
)-(
2a+2
-
1-a
)=(
2b+2
-
2a+2
)+(
1-a
-
1-b
).
∵b>a,
∴2b+2>2a+2,即有
2b+2
-
2a+2
>0
1-a>1-b即有
1+a
-
1-b
>0
∴f(b)-f(a)>0,即有f(x)在[0,1]上是增函数.
故f(x)的最大值为f(1)=2.
最小值f(0)=
2
-1.
点评:本题考查函数单调性,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知
a
=(sinx,-cosx),
b
=(cosx,
3
cosx),函数f(x)=
a
b
+
3
2

(1)求f(x)的最小正周期及单调增区间;
(2)当0≤x≤
π
2
时,求x为何值时函数f(x)分别取最大最小值并求出最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某人计划开垦一块面积为32平方米的长方形菜地,同时要求菜地周围要留出前后宽2米,左右宽1米的过道(如图),设菜地的长为x米.
(1)试用x表示菜地的宽;
(2)试问当x为多少时,菜地及过道的总面积y有最小值,最小值为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a2+c2-b2=ac,
(1)求角B的大小;                
(2)求sinA•sinC的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知-1≤x≤0,求函数y=2x+1-3•4x的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

过球心的截面圆的周长为6π,求这个球的表面积和体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=-x2+2x.
(1)证明:f(x)在[1,+∞)上是减函数;
(2)当x∈[0,5]时,求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

把下列方程化为直角坐标方程(并说明对应的曲线):
①ρ=-4cosθ+2sinθ;           
x=sinθ
y=cos2θ-7
(θ为参数).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知盒子中有散落的棋子15粒,其中6粒是黑子,9粒是白子,已知从中取出2粒都是黑子的概率是
1
7
,从中取出2粒都是白子的概率是
12
35
,现从中任意取出2粒恰好是同一色的概率是多少?

查看答案和解析>>

同步练习册答案