分析 由函数f(x)=$\left\{\begin{array}{l}{{2}^{x-2}-2,}&{x≤1}\\{-lo{g}_{2}(x+1),}&{x>1}\end{array}\right.$且f(a)=-3,求出a值,可得答案.
解答 解:∵函数f(x)=$\left\{\begin{array}{l}{{2}^{x-2}-2,}&{x≤1}\\{-lo{g}_{2}(x+1),}&{x>1}\end{array}\right.$,
∴当a≤1时,2a-2-2=-3,无解;
当a>1时,-log2(a+1)=-3,解得a=7,
∴f(6-a)=f(-1)=2-1-2-2=-$\frac{15}{8}$,
故答案为:-$\frac{15}{8}$
点评 本题考查的知识点是分段函数的应用,函数求值,分类讨论思想,方程思想,难度中档.
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | $\frac{1}{3}$ | C. | $\frac{1}{3}$或3 | D. | $\frac{3}{10}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2016 | B. | 1008 | C. | 22016 | D. | 21008 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 4 | C. | 8 | D. | 16 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com