12£®Èçͼ1£¬ÔÚÖ±½ÇÌÝÐÎSABCÖУ¬¡ÏB=¡ÏC=$\frac{¦Ð}{2}$£¬DΪ±ßSCÉϵĵ㣬ÇÒAD¡ÍSC£¬ÏÖ½«¡÷SADÑØADÕÛÆðµ½´ïPADµÄλÖã¨ÕÛÆðºóµãS¼ÇΪP£©£¬²¢Ê¹µÃPA¡ÍAB£®
£¨1£©ÇóÖ¤£ºPD¡ÍÆ½ÃæABCD£»
£¨2£©ÒÑÖªPD=AD£¬PD+AD+DC=6£¬µ±Ïß¶ÎPBÈ¡µÃ×îСֵʱ£¬Çë½â´ðÒÔÏÂÎÊÌ⣺
¢ÙÉèµãEÂú×ã$\overrightarrow{BE}$=¦Ë$\overrightarrow{BP}$£¨0¡Ü¦Ë¡Ü1£©£¬ÔòÊÇ·ñ´æÔڦˣ¬Ê¹µÃÆ½ÃæEACÓëÆ½ÃæPDCËù³ÉµÄÈñ½ÇÊÇ$\frac{¦Ð}{3}$£¿Èô´æÔÚ£¬Çó³ö¦Ë£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£»
¢ÚÉèGÊÇADµÄÖе㣬ÔòÔÚÆ½ÃæPBCÉÏÊÇ·ñ´æÔÚµãF£¬Ê¹µÃFG¡ÍÆ½ÃæPBC£¿Èô´æÔÚ£¬È·¶¨µãFµÄλÖã¬Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©¸ù¾ÝÏßÃæ´¹Ö±µÄÅж¨¶¨Àí¼´¿ÉÖ¤Ã÷PD¡ÍÆ½ÃæABCD£»
£¨2£©½¨Á¢¿Õ¼ä×ø±êϵ£¬Çó³öÆ½ÃæµÄ·¨ÏòÁ¿£¬ÀûÓÃÏòÁ¿·¨½øÐÐÇó½â¼´¿É£®

½â´ð Ö¤Ã÷£º£¨1£©¡ßPA¡ÍAB£¬AB¡ÍAD£¬PA¡ÍAD=A£¬
¡àAB¡ÍÆ½ÃæPAD£¬
¡ßPD?Æ½ÃæPAD£¬
¡àAB¡ÍPD£¬
¡ßPD¡ÍAD£¬AD¡ÉAB=A£¬
¡àPD¡ÍÆ½ÃæABCD
£¨2£©ÉèPD=x£¬ÔòAD=x£¬DC=6-2x£¬
¡àPB2=x2+x2+£¨6-2x£©2=6£¨x-2£©2+12£¬µ±ÇÒ½öµ±x=2ʱ£¬PB2È¡µÃ×îСֵ£¬
¼´PBÈ¡µÃ×îСֵ£¬
ÒÔÒÔDΪԭµã£¬DA£¬DC£¬DP·Ö±ðΪxÖᣬyÖᣬzÖὨÁ¢¿Õ¼äÖ±½Ç×ø±êϵD-xyz£¬
ÉèPD=AD=2£¬
ÔòA£¨2£¬0£¬0£©£¬B£¨2£¬2£¬0£©£¬C£¨0£¬2£¬0£©£¬P£¨0£¬0£¬2£©£¬
$\overrightarrow{CB}$=£¨2£¬0£¬0£©£¬$\overrightarrow{BP}$=£¨-2£¬-2£¬2£©£¬
$\overrightarrow{CA}$=£¨2£¬-2£¬0£©£¬
¢Ù´æÔÚ£¬ÊÂʵÉÏ£¬$\overrightarrow{CE}=\overrightarrow{CB}+\overrightarrow{BE}$=$\overrightarrow{CB}+¦Ë\overrightarrow{BP}$=£¨2-2¦Ë£¬-2¦Ë£¬2¦Ë£©£¬
Éè$\overrightarrow{n}$=£¨x£¬y£¬z£©ÊÇÆ½ÃæACEµÄÒ»¸ö·¨ÏòÁ¿£¬
Ôò$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{CE}=0}\\{\overrightarrow{n}•\overrightarrow{CA}=0}\end{array}\right.$£¬¼´$\left\{\begin{array}{l}{£¨2-2¦Ë£©x-2¦Ëy+2¦Ëz=0}\\{2x-2y=0}\end{array}\right.$£¬
È¡$\overrightarrow{n}$=£¨¦Ë£¬¦Ë£¬2¦Ë-1£©£¬
Ôò$\overrightarrow{m}$=£¨1£¬0£¬0£©ÊÇÆ½ÃæPCDµÄÒ»¸ö·¨ÏòÁ¿£¬
Ôòcos$\frac{¦Ð}{3}$=|cos£¼$\overrightarrow{m}£¬\overrightarrow{n}$£¾|=|$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}$|=$\frac{|¦Ë|}{\sqrt{2{¦Ë}^{2}+£¨2¦Ë-1£©^{2}}}$=$\frac{1}{2}$£¬
¡ß00£¼¦Ë£¼1£¬¡à¦Ë=1-$\frac{\sqrt{2}}{2}$£¬
¢ÚÉè´æÔÚµãF·ûºÏÌâÒ⣬¶øµãFÔÚÆ½ÃæPBCÉÏ£¬ÓÚÊÇ´æÔÚm£¬nʹ$\overrightarrow{CF}=m\overrightarrow{CB}+n\overrightarrow{CP}$£¬
$\overrightarrow{GF}=\overrightarrow{GC}+\overrightarrow{CF}=\overrightarrow{GC}$$+m\overrightarrow{CB}+n\overrightarrow{CP}$=£¨-1+2m£¬2-2n£¬2n£©£¬
×¢Òâµ½µÈÑüÖ±½ÇÈý½ÇÐÎPDC£¬Ð±±ßÉϵÄÖ±Ïß´¹Ö±ÓÚÆ½ÃæPBC£¬
Ôò$\overrightarrow{{n}_{1}}$=£¨0£¬0£¬1£©ÊÇÆ½ÃæPBCµÄÒ»¸ö·¨ÏòÁ¿£¬
Ôò$\overrightarrow{{n}_{1}}$¡Î$\overrightarrow{CF}$£¬¼´$\left\{\begin{array}{l}{-1+2m=0}\\{2-2n=2n}\end{array}\right.$£¬
½âµÃm=n=$\frac{1}{2}$£¬´ËʱµãF£¨1£¬1£¬1£¬£©£¬
¹ÊÔÚÆ½ÃæPBCÉÏÊÇ´æÔÚPBµÄÖеãF£¬Ê¹µÃFG¡ÍÆ½ÃæPBC£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁËÏßÃæ´¹Ö±µÄ¶¨ÒåºÍÅж¨¶¨ÀíµÄÓ¦Óã¬Æ½ÃæÏòÁ¿µÄÔËË㣬·¨ÏòÁ¿µÄ¶¨ÒåµÈ֪ʶ£®¿¼²éÁËѧÉú¶Ô»ù´¡ÖªÊ¶µÄ×ÛºÏÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®Èçͼ£¬ÈýÀâÖùABC-A1B1C1µÄ²àÀâ´¹Ö±ÓÚµ×Ãæ£¬µ×Ãæ±ß³¤ºÍ²àÀⳤ¾ùΪ2£¬DÊÇBCµÄÖе㣮
£¨¢ñ£©ÇóÖ¤£ºAD¡ÍÆ½ÃæB1BCC1£»
£¨¢ò£©ÇóÖ¤£ºA1B¡ÎÆ½ÃæADC1£»
£¨¢ó£©ÇóÈýÀâ×¶C1-ADB1µÄÌå»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®ÒÑÖªa£¾0£¬b£¾0£¬a+4b=ab£¬Ôòa+bµÄ×îСֵÊÇ9£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®É躯Êýf£¨x£©=£¨x+sinx£©£¨ex+ae-x£©£¨x¡ÊR£©ÊÇżº¯Êý£¬ÔòʵÊýa=-1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÒÑÖªº¯Êýf£¨x£©=sin£¨¦Øx+$\frac{¦Ð}{12}$£©µÄͼÏó¾­¹ýµãP£¨-$\frac{¦Ð}{12}$£¬0£©£¬Í¼ÏóÉÏÓëµãP×î½üµÄÒ»¸ö×î¸ßµãÊÇQ£¨$\frac{5¦Ð}{12}$£¬1£©£®
£¨1£©Ç󦨵ÄÖµ£»
£¨2£©Èôcos¦È=$\frac{4}{5}$£¬¦È¡Ê£¨0£¬$\frac{¦Ð}{2}$£©£¬Çóf£¨2¦È-$\frac{¦Ð}{3}$£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÒÑÖªÍÖÔ²C1ÓëÅ×ÎïÏßC2µÄ½¹µã¾ùÔÚxÖáÉÏ£¬C1µÄÖÐÐĺÍC2µÄ¶¥µãΪԭµãO£¬´ÓÍÖÔ²C1ÉÏÈ¡Á½¸öµã£¬´ÓÍÖÔ²C2ÉÏȡһ¸öµã£¬½«Æä×ø±ê¼Ç¼ÓÚ±íÖУº
 x $\sqrt{2}$ 2 4
 y $\frac{\sqrt{2}}{2}$ 0 4
£¨1£©ÊÔÅжÏÁ½¸öµãÔÚC1ÉÏ£¬²¢Çó³öC1£¬C2µÄ±ê×¼·½³Ì£»
£¨2£©ÒÑÖªÖ±Ïßl£ºx=my+1ÓëÍÖÔ²C2ÏཻÓÚ²»Í¬Á½µãM£¬N£¬ÇÒÂú×ã$\overrightarrow{OM}¡Í\overrightarrow{ON}$£¬Çó²ÎÊýmµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®ÒÑÖª¼¯ºÏ{x£¬y£¬z}={0£¬1£¬2}£¬ÇÒÏÂÁÐÈý¸ö¹ØÏµ£º¢Ùx¡Ù2£»¢Úy=2£»¢Ûz¡Ù0ÓÐÇÒÖ»ÓÐÒ»¸öÕýÈ·£¬Ôò100x+10y+zµÈÓÚ201£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®Èô£¨x-2£©nÕ¹¿ªÊ½Öй²ÓÐ12ÏÔòn=£¨¡¡¡¡£©
A£®10B£®11C£®12D£®13

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®°ÑʵÊýa£¬b£¬c£¬dÅųÉ$£¨{\begin{array}{l}a&c\\ b&d\end{array}}£©$µÄÐÎʽ£¬³ÆÎª¶þÐжþÁоØÕó£®¶ÔÓÚµãP£¨x£¬y£©£¬¶¨Ò徨ÕóµÄÒ»ÖÖÔËËã$£¨{x£¬y}£©£¨{\begin{array}{l}a&c\\ b&d\end{array}}£©=£¨{ax+by£¬cx+dy}£©$£¬²¢³Æ£¨ax+by£¬cx+dy£©ÎªµãPÔÚ¾ØÕó$£¨{\begin{array}{l}a&c\\ b&d\end{array}}£©$×÷ÓÃϵĵ㣮¸ø³öÏÂÁÐÃüÌ⣺
¢ÙµãP£¨3£¬4£©ÔÚ¾ØÕó$£¨\begin{array}{l}{1}&{2}\\{0}&{1}\end{array}£©$×÷ÓÃϵĵãΪ£¨3£¬10£©£»
¢ÚÇúÏßy=x2ÉϵĵãÔÚ¾ØÕó$£¨\begin{array}{l}{1}&{0}\\{0}&{1}\end{array}£©$µÄ×÷ÓÃϽ«Âú×ã·½³Ìy=-x2£»
¢Û·½³Ì×é$\left\{\begin{array}{l}{{a}_{11}x+{a}_{12}y={b}_{1}}\\{{a}_{21}x+{a}_{22}y={b}_{2}}\end{array}\right.$¿É±íʾ³É¾ØÕóÔËË㣨x£¬y£©$£¨\begin{array}{l}{{a}_{11}}&{{a}_{12}}\\{{a}_{21}}&{{a}_{22}}\end{array}£©$=£¨b1£¬b2£©£»
¢ÜÈôÇúÏßx2+4xy+2y2=1ÔÚ$£¨\begin{array}{l}{1}&{a}\\{b}&{1}\end{array}£©$×÷ÓÃϱ任³ÉÇúÏßx2-2y2=1£¬Ôòa+b=2£®
ÆäÖÐÕæÃüÌâµÄÐòºÅΪ¢Ù¢Ü£®£¨ÌîÉÏËùÓÐÕæÃüÌâµÄÐòºÅ£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸