精英家教网 > 高中数学 > 题目详情
3.已知a>0,b>0,a+4b=ab,则a+b的最小值是9.

分析 由题意可得$\frac{1}{b}$+$\frac{4}{a}$=1,可得a+b=(a+b)($\frac{1}{b}$+$\frac{4}{a}$)=5+$\frac{a}{b}$+$\frac{4b}{a}$,由基本不等式求最值可得.

解答 解:∵a>0,b>0,a+4b=ab,
∴$\frac{a+4b}{ab}$=1,即$\frac{1}{b}$+$\frac{4}{a}$=1,
∴a+b=(a+b)($\frac{1}{b}$+$\frac{4}{a}$)
=5+$\frac{a}{b}$+$\frac{4b}{a}$≥5+2$\sqrt{\frac{a}{b}•\frac{4b}{a}}$=9
当且仅当$\frac{a}{b}$=$\frac{4b}{a}$即a=6且b=3时取等号,
故答案为:9

点评 本题考查基本不等式求最值,适当变形是解决问题的关键,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=sin(2x+φ)(|φ|<$\frac{π}{2}$),且f($\frac{π}{12}$)=1,为了得到g(x)=sin2x的图象,则只要将f(x)的图象(  )
A.向左平移$\frac{π}{3}$个单位B.向右平移$\frac{π}{3}$个单位
C.向左平移$\frac{π}{6}$个单位D.向右平移$\frac{π}{6}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设平面内有四个向量$\overrightarrow{a}$、$\overrightarrow{b}$、$\overrightarrow{m}$、$\overrightarrow{n}$,满足$\overrightarrow{a}$=$\overrightarrow{n}$-$\overrightarrow{m}$,$\overrightarrow{b}$=2$\overrightarrow{m}$-$\overrightarrow{n}$,$\overrightarrow{a}$⊥$\overrightarrow{b}$,|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=1.
(1)用$\overrightarrow{a}$、$\overrightarrow{b}$表示$\overrightarrow{m}$、$\overrightarrow{n}$;
(2)若$\overrightarrow{m}$与$\overrightarrow{n}$的夹角为θ,求cosθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设某高校高三女生体重y(单位:kg)与身高x(单位:cm)具有线性关系,根据一组样本数据(xi,yi)(i=1,2,…n),用最小二乘法求得的回归直线方程为$\widehat{y}$=0.85x-85.71,若该校高三某女生身高增加1cm,则其体重约增加0.85kg.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知命题p:?x∈R,使sinx<$\frac{1}{2}$x成立,则¬p是?x∈R,使sinx≥$\frac{1}{2}$x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知:命题p:椭圆$\frac{{x}^{2}}{m+1}$+$\frac{{y}^{2}}{2-m}$=1的焦点在x轴上,命题q:不等式x2+2xy≤m(2x2+y2)对于一切整数x,y恒成立.
(1)若p为假命题,求实数m的取值范围;
(2)若p∧q是假命题,p∨q是真命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设α、β是两个不同的平面,l、m为两条不同的直线,命题p:若α∥β,l?α,m?β,则l∥m,命题q:l∥α,m⊥l,m?β,则α⊥β则下列命题为真命题的是(  )
A.p∨qB.p∧qC.(¬p)∨qD.p∧(¬q)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图1,在直角梯形SABC中,∠B=∠C=$\frac{π}{2}$,D为边SC上的点,且AD⊥SC,现将△SAD沿AD折起到达PAD的位置(折起后点S记为P),并使得PA⊥AB.
(1)求证:PD⊥平面ABCD;
(2)已知PD=AD,PD+AD+DC=6,当线段PB取得最小值时,请解答以下问题:
①设点E满足$\overrightarrow{BE}$=λ$\overrightarrow{BP}$(0≤λ≤1),则是否存在λ,使得平面EAC与平面PDC所成的锐角是$\frac{π}{3}$?若存在,求出λ;若不存在,请说明理由;
②设G是AD的中点,则在平面PBC上是否存在点F,使得FG⊥平面PBC?若存在,确定点F的位置,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在四棱锥P-ABCD中,底面ABCD是直角梯形,AB∥DC,∠ABC=$\frac{π}{2}$,AD=2$\sqrt{2}$,AB=3DC=3.
(1)在棱PB上确定一点E,使得CE∥平面PAD;
(2)若PA=PD=$\sqrt{6}$,PB=PC,求直线PA与平面PBC所成角的大小.

查看答案和解析>>

同步练习册答案