精英家教网 > 高中数学 > 题目详情
4.已知集合{x,y,z}={0,1,2},且下列三个关系:①x≠2;②y=2;③z≠0有且只有一个正确,则100x+10y+z等于201.

分析 根据集合相等的条件和题意分类讨论,分别求出对应的x、y、z的值再验证,最后将代入式子求值即可.

解答 解:由题意知,{x,y,z}={0,1,2},且下列三个关系:①x≠2;②y=2;③z≠0有且只有一个正确,
(1)当①x≠2正确,②y=2、③z≠0不正确时,
有:①x=1,②y=2,③z=0,这与②y=2不正确矛盾,舍去;
(2)当②y=2正确,①x≠2;③z≠0时不正确时,
有:①x=2;②y=2;③z=0,与集合的互异性矛盾,舍去;
(3)当③z≠0正确,②y=2;①x≠2不正确时,
有:①x=2;②y=0;③z=1,满足条件,故成立,
综上可得,满足条件对应的x=2、y=0、z=1,
所以100x+10y+z=201,
故答案为:201.

点评 本题考查了集合相等的条件,集合元素的性质,以及分类讨论思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.设平面内有四个向量$\overrightarrow{a}$、$\overrightarrow{b}$、$\overrightarrow{m}$、$\overrightarrow{n}$,满足$\overrightarrow{a}$=$\overrightarrow{n}$-$\overrightarrow{m}$,$\overrightarrow{b}$=2$\overrightarrow{m}$-$\overrightarrow{n}$,$\overrightarrow{a}$⊥$\overrightarrow{b}$,|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=1.
(1)用$\overrightarrow{a}$、$\overrightarrow{b}$表示$\overrightarrow{m}$、$\overrightarrow{n}$;
(2)若$\overrightarrow{m}$与$\overrightarrow{n}$的夹角为θ,求cosθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设α、β是两个不同的平面,l、m为两条不同的直线,命题p:若α∥β,l?α,m?β,则l∥m,命题q:l∥α,m⊥l,m?β,则α⊥β则下列命题为真命题的是(  )
A.p∨qB.p∧qC.(¬p)∨qD.p∧(¬q)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图1,在直角梯形SABC中,∠B=∠C=$\frac{π}{2}$,D为边SC上的点,且AD⊥SC,现将△SAD沿AD折起到达PAD的位置(折起后点S记为P),并使得PA⊥AB.
(1)求证:PD⊥平面ABCD;
(2)已知PD=AD,PD+AD+DC=6,当线段PB取得最小值时,请解答以下问题:
①设点E满足$\overrightarrow{BE}$=λ$\overrightarrow{BP}$(0≤λ≤1),则是否存在λ,使得平面EAC与平面PDC所成的锐角是$\frac{π}{3}$?若存在,求出λ;若不存在,请说明理由;
②设G是AD的中点,则在平面PBC上是否存在点F,使得FG⊥平面PBC?若存在,确定点F的位置,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.过点P(4,-1)且与直线3x-4y+6=0垂直的直线方程是(  )
A.4x-3y-19=0B.4x+3y-13=0C.3x-4y-16=0D.3x+4y-8=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.${(1-\sqrt{x})^5}$的展开式中x2的系数是(  )
A.-5B.5C.-10D.10

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.对于四面体A-BCD,有以下命题:
①若AB=AC=AD,则AB,AC,AD与底面所成的角相等;
②若AB⊥CD,AC⊥BD,则点A在底面BCD内的射影是△BCD的内心;
③四面体A-BCD的四个面中最多有四个直角三角形;
④若点A到底面三角形BCD三边的距离相等,则侧面与底面所成的二面角相等;
⑤若四面体A-BCD是棱长为1的正四面体,则它的内切球的表面积为$\frac{π}{6}$.
其中,正确的命题是①③⑤(写出所有正确命题的编号).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在四棱锥P-ABCD中,底面ABCD是直角梯形,AB∥DC,∠ABC=$\frac{π}{2}$,AD=2$\sqrt{2}$,AB=3DC=3.
(1)在棱PB上确定一点E,使得CE∥平面PAD;
(2)若PA=PD=$\sqrt{6}$,PB=PC,求直线PA与平面PBC所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知椭圆C1:$\frac{{x}^{2}}{{a}_{1}^2}$+$\frac{{y}^{2}}{{{b}_{1}}^{2}}$=1(a1>0,b2>0)与双曲线C2::$\frac{{x}^{2}}{{a}_{2}^2}$-$\frac{{y}^{2}}{{{b}_{2}}^{2}}$=1(a1>0,b2>0)有相同的焦点F1,F2,点P是两曲线的一个公共点,e1,e2又分别是两曲线的离心率,若PF1⊥PF2,则4e12+e22的最小值(  )
A.$\frac{5}{2}$B.4C.$\frac{9}{2}$D.9

查看答案和解析>>

同步练习册答案