14£®ÒÑÖªÍÖÔ²C1£º$\frac{{x}^{2}}{{a}_{1}^2}$+$\frac{{y}^{2}}{{{b}_{1}}^{2}}$=1£¨a1£¾0£¬b2£¾0£©ÓëË«ÇúÏßC2£º£º$\frac{{x}^{2}}{{a}_{2}^2}$-$\frac{{y}^{2}}{{{b}_{2}}^{2}}$=1£¨a1£¾0£¬b2£¾0£©ÓÐÏàͬµÄ½¹µãF1£¬F2£¬µãPÊÇÁ½ÇúÏßµÄÒ»¸ö¹«¹²µã£¬e1£¬e2ÓÖ·Ö±ðÊÇÁ½ÇúÏßµÄÀëÐÄÂÊ£¬ÈôPF1¡ÍPF2£¬Ôò4e12+e22µÄ×îСֵ£¨¡¡¡¡£©
A£®$\frac{5}{2}$B£®4C£®$\frac{9}{2}$D£®9

·ÖÎö ÌâÒâÉè½¹¾àΪ2c£¬ÍÖÔ²³¤Ö᳤Ϊ2a1£¬Ë«ÇúÏßʵÖáΪ2a2£¬ÁîPÔÚË«ÇúÏßµÄÓÒÖ§ÉÏ£¬ÓÉÒÑÖªÌõ¼þ½áºÏË«ÇúÏߺÍÍÖÔ²µÄ¶¨ÒåÍÆ³öa12+a22=2c2£¬ÓÉ´ËÄÜÇó³ö4e12+e22µÄ×îСֵ£®

½â´ð ½â£ºÓÉÌâÒâÉè½¹¾àΪ2c£¬ÍÖÔ²³¤Ö᳤Ϊ2a1£¬Ë«ÇúÏßʵÖáΪ2a2£¬
ÁîPÔÚË«ÇúÏßµÄÓÒÖ§ÉÏ£¬
ÓÉË«ÇúÏߵ͍Òå|PF1|-|PF2|=2a2£¬¢Ù
ÓÉÍÖÔ²¶¨Òå|PF1|+|PF2|=2a1£¬¢Ú
ÓÖ¡ßPF1¡ÍPF2£¬
¡à|PF1|2+|PF2|2=4c2£¬¢Û
¢Ù2+¢Ú2£¬µÃ|PF1|2+|PF2|2=2a12+2a22£¬¢Ü
½«¢Ü´úÈë¢Û£¬µÃa12+a22=2c2£¬
¡à4e12+e22=$\frac{4{c}^{2}}{{{a}_{1}}^{2}}+\frac{{c}^{2}}{{{a}_{2}}^{2}}$=$\frac{5}{2}$+$\frac{2{{a}_{2}}^{2}}{{{a}_{1}}^{2}}$+$\frac{{{a}_{1}}^{2}}{2{{a}_{2}}^{2}}$¡Ý$\frac{5}{2}$+2=$\frac{9}{2}$£®
¹ÊÑ¡£ºC£®

µãÆÀ ±¾Ì⿼²é4e12+e22µÄ×îСֵµÄÇ󷨣¬ÊÇÖеµÌ⣬½âÌâʱҪÊìÁ·ÕÆÎÕË«ÇúÏß¡¢ÍÖÔ²µÄ¶¨Ò壬עÒâ¾ùÖµ¶¨ÀíµÄºÏÀíÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®ÒÑÖª¼¯ºÏ{x£¬y£¬z}={0£¬1£¬2}£¬ÇÒÏÂÁÐÈý¸ö¹ØÏµ£º¢Ùx¡Ù2£»¢Úy=2£»¢Ûz¡Ù0ÓÐÇÒÖ»ÓÐÒ»¸öÕýÈ·£¬Ôò100x+10y+zµÈÓÚ201£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®ÒÑÖªÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬a1=1£¬an=$\sqrt{{S}_{n}}$+$\sqrt{{S}_{n-1}}$£¬£¨n¡Ý2£©
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©Éèbn=$\frac{1}{{a}_{n}{a}_{n+1}}$£¬ÊýÁÐ{bn}µÄǰnÏîºÍΪTn£¬¶ÔÓÚÈÎÒâµÄn¡ÊN*¶¼ÓЦËTn£¼n+8£¬ÇóʵÊý¦ËµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®°ÑʵÊýa£¬b£¬c£¬dÅųÉ$£¨{\begin{array}{l}a&c\\ b&d\end{array}}£©$µÄÐÎʽ£¬³ÆÎª¶þÐжþÁоØÕó£®¶ÔÓÚµãP£¨x£¬y£©£¬¶¨Ò徨ÕóµÄÒ»ÖÖÔËËã$£¨{x£¬y}£©£¨{\begin{array}{l}a&c\\ b&d\end{array}}£©=£¨{ax+by£¬cx+dy}£©$£¬²¢³Æ£¨ax+by£¬cx+dy£©ÎªµãPÔÚ¾ØÕó$£¨{\begin{array}{l}a&c\\ b&d\end{array}}£©$×÷ÓÃϵĵ㣮¸ø³öÏÂÁÐÃüÌ⣺
¢ÙµãP£¨3£¬4£©ÔÚ¾ØÕó$£¨\begin{array}{l}{1}&{2}\\{0}&{1}\end{array}£©$×÷ÓÃϵĵãΪ£¨3£¬10£©£»
¢ÚÇúÏßy=x2ÉϵĵãÔÚ¾ØÕó$£¨\begin{array}{l}{1}&{0}\\{0}&{1}\end{array}£©$µÄ×÷ÓÃϽ«Âú×ã·½³Ìy=-x2£»
¢Û·½³Ì×é$\left\{\begin{array}{l}{{a}_{11}x+{a}_{12}y={b}_{1}}\\{{a}_{21}x+{a}_{22}y={b}_{2}}\end{array}\right.$¿É±íʾ³É¾ØÕóÔËË㣨x£¬y£©$£¨\begin{array}{l}{{a}_{11}}&{{a}_{12}}\\{{a}_{21}}&{{a}_{22}}\end{array}£©$=£¨b1£¬b2£©£»
¢ÜÈôÇúÏßx2+4xy+2y2=1ÔÚ$£¨\begin{array}{l}{1}&{a}\\{b}&{1}\end{array}£©$×÷ÓÃϱ任³ÉÇúÏßx2-2y2=1£¬Ôòa+b=2£®
ÆäÖÐÕæÃüÌâµÄÐòºÅΪ¢Ù¢Ü£®£¨ÌîÉÏËùÓÐÕæÃüÌâµÄÐòºÅ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®Éèf£¨x£©ÊǶ¨ÒåÔÚRÉϺ㲻ΪÁãµÄº¯Êý£¬¶ÔÈÎÒâx£¬y¡ÊR£¬¶¼ÓÐf£¨x£©•f£¨y£©=f£¨x+y£©£¬Èôa1=$\frac{1}{2}$£¬an=f£¨n£©£¨n¡ÊN*£©£¬ÔòÊýÁÐ{an}µÄǰnÏîºÍSn=1-${£¨\frac{1}{2}£©}^{n}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÒÑÖª£ºP£¬QÊÇÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©ÉÏÁ½µã£¬OΪÍÖÔ²ÖÐÐÄ£¬OP¡ÍOQ£¬ÇóÖ¤£º
£¨1£©$\frac{1}{|OP{|}^{2}}$+$\frac{1}{|OQ{|}^{2}}$=$\frac{1}{{a}^{2}}$+$\frac{1}{{b}^{2}}$£»
£¨2£©Oµ½Ö±ÏßPQµÄ¾àÀëΪ¶¨Öµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÏÂÁзûºÅÓïÑÔ±íÊöÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®A¡ÊlB£®A?¦ÁC£®A?lD£®l¡Ê¦Á

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖªÍÖÔ²C1£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ×ó½¹µãΪF1£¨-1£¬0£©ÇÒµãP£¨0£¬1£©ÔÚC1ÉÏ£®
£¨1£©ÇóÍÖÔ²C1µÄ·½³Ì£»
£¨2£©ÉèÖ±ÏßlͬʱÓëÍÖÔ²C1ºÍÅ×ÎïÏßC2£ºy2=4xÏàÇУ¬ÇóÖ±ÏßlµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®ÒÑÖªº¯Êýf£¨x£©=$\frac{{{e^x}-{e^{-x}}}}{2}£¬g£¨x£©=\frac{{{e^x}+{e^{-x}}}}{2}$£¨ÆäÖÐe=2.71718¡­£©£¬ÓÐÏÂÁÐÃüÌ⣺
¢Ùf£¨x£©ÊÇÆæº¯Êý£¬g£¨x£©ÊÇżº¯Êý£»
¢Ú¶ÔÈÎÒâx¡ÊR£¬¶¼ÓÐf£¨2x£©=f£¨x£©•g£¨x£©£»
¢Ûf£¨x£©ÓÐÁãµã£¬g£¨x£©ÎÞÁãµã£®
ÆäÖÐÕýÈ·µÄÃüÌâÊÇ¢Ù¢Û£®£¨ÌîÉÏËùÓÐÕýÈ·ÃüÌâµÄÐòºÅ£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸