精英家教网 > 高中数学 > 题目详情
4.已知函数f(x)=$\frac{{{e^x}-{e^{-x}}}}{2},g(x)=\frac{{{e^x}+{e^{-x}}}}{2}$(其中e=2.71718…),有下列命题:
①f(x)是奇函数,g(x)是偶函数;
②对任意x∈R,都有f(2x)=f(x)•g(x);
③f(x)有零点,g(x)无零点.
其中正确的命题是①③.(填上所有正确命题的序号)

分析 直接由函数奇偶性的定义判断①正确;代值验证②错误;先判断函数单调性,g(x)有最小值;直接求出f(x)的零点,由单调性及奇偶性和最值说明g(x)无零点.

解答 解:f(-x)=$\frac{1}{2}$(e-x-ex)=-$\frac{1}{2}$(ex-e-x)=-f(x),故f(x)为奇函数,
g(-x)=$\frac{1}{2}$(e-x+ex)=g(x),故g(x)为偶函数,故命题①正确,
f(2x)=$\frac{1}{2}$(e2x-e-2x)=$\frac{1}{2}$(ex+e-x)(ex-e-x),
f(x)•g(x)=$\frac{1}{2}$(ex-e-x)$\frac{1}{2}$(e-x+ex)=$\frac{1}{4}$(ex+e-x)(ex-e-x),故命题②不正确;
函数y=ex,y=-e-x在实数集上均为增函数,
∴f(x)在R上单调递增,
设x1<x2<0,
则g(x1)-g(x2)=$\frac{1}{2}$(ex1+e-x1)-$\frac{1}{2}$(ex2+e-x2)=$\frac{1}{2}$[(ex1-ex2)+(1-$\frac{1}{{e}^{{x}_{1}}{e}^{{x}_{2}}}$)],
∵x1<x2<0,
∴g(x1)-g(x2)>0,即g(x1)>g(x2).
g(x)在(-∞,0)上单调递减,
当x=0时,g(x)有最小值1,且函数是偶函数,
∴g(x)无零点,
由f(x)=0,即$\frac{1}{2}$(ex-e-x)=0,得x=0,
∴f(x)有零点0,故命题③正确.
故答案为:①③.

点评 本题考查了命题的真假判断与应用,考查了函数的性质,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知椭圆C1:$\frac{{x}^{2}}{{a}_{1}^2}$+$\frac{{y}^{2}}{{{b}_{1}}^{2}}$=1(a1>0,b2>0)与双曲线C2::$\frac{{x}^{2}}{{a}_{2}^2}$-$\frac{{y}^{2}}{{{b}_{2}}^{2}}$=1(a1>0,b2>0)有相同的焦点F1,F2,点P是两曲线的一个公共点,e1,e2又分别是两曲线的离心率,若PF1⊥PF2,则4e12+e22的最小值(  )
A.$\frac{5}{2}$B.4C.$\frac{9}{2}$D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知直线l1,l2过椭圆$\frac{x^2}{4}$+$\frac{y^2}{{\frac{4}{3}}}$=1的中心且相互垂直的两条直线,分别交椭圆于A,B,C,D,四边形ABCD的面积的最小值是(  )
A.2B.4C.$\frac{8\sqrt{3}}{3}$D.$\frac{16\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.直三棱柱ABC-A1B1C1中,AA1=AC,AB⊥AC,D,E分别是A1C1,BC的中点.
(Ⅰ)求证:C1E∥平面DAB;
(Ⅱ)在线段A1A上是否存在点G,使得平面BCG⊥平面ABD?若存在,试确定点G的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知点M($\sqrt{3}$,2)是椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)上的一点,MF2垂直于x轴,F1,F2分别为椭圆的左、右焦点,A1,A2分别为椭圆的左、右顶点
(1)求椭圆C的标准方程;
(2)动直线l:x=my+1与椭圆C交于P、Q两点,直线A1P与直线A2Q交于点S,当直线l变化时,点S是否在一条定直线上?若是,求出定直线方程;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设x、y∈R且满足$\left\{\begin{array}{l}{x≥1}\\{x-2y+3≥0}\\{y≥x}\end{array}\right.$,则z=x-2y的最大值等于-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知O是坐标原点,A(1,-1),B(1,-2),C(1,0),P(x,y)是平面内任一点,不等式组$\left\{\begin{array}{l}\overrightarrow{OP}•\overrightarrow{OA}≥0\\ \overrightarrow{OP}•\overrightarrow{OB}≤0\\ \overrightarrow{OP}•\overrightarrow{OC}≤1\end{array}\right.$解集表示的平面区域为E,若?(x,y)∈E,都有2x+y≤S,则S的最小值为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.某三棱锥的侧视图,俯视图如图所示,则该三棱锥正视图的面积是(  )
A.2B.3C.$\frac{3}{2}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知点P(x,y)是直线x+3y-2=0上的动点,则代数式2x+3×8y有(  )
A.最小值2$\sqrt{3}$B.最大值2$\sqrt{3}$C.最小值4$\sqrt{3}$D.最大值4$\sqrt{3}$

查看答案和解析>>

同步练习册答案