2£®°ÑʵÊýa£¬b£¬c£¬dÅųÉ$£¨{\begin{array}{l}a&c\\ b&d\end{array}}£©$µÄÐÎʽ£¬³ÆÎª¶þÐжþÁоØÕó£®¶ÔÓÚµãP£¨x£¬y£©£¬¶¨Ò徨ÕóµÄÒ»ÖÖÔËËã$£¨{x£¬y}£©£¨{\begin{array}{l}a&c\\ b&d\end{array}}£©=£¨{ax+by£¬cx+dy}£©$£¬²¢³Æ£¨ax+by£¬cx+dy£©ÎªµãPÔÚ¾ØÕó$£¨{\begin{array}{l}a&c\\ b&d\end{array}}£©$×÷ÓÃϵĵ㣮¸ø³öÏÂÁÐÃüÌ⣺
¢ÙµãP£¨3£¬4£©ÔÚ¾ØÕó$£¨\begin{array}{l}{1}&{2}\\{0}&{1}\end{array}£©$×÷ÓÃϵĵãΪ£¨3£¬10£©£»
¢ÚÇúÏßy=x2ÉϵĵãÔÚ¾ØÕó$£¨\begin{array}{l}{1}&{0}\\{0}&{1}\end{array}£©$µÄ×÷ÓÃϽ«Âú×ã·½³Ìy=-x2£»
¢Û·½³Ì×é$\left\{\begin{array}{l}{{a}_{11}x+{a}_{12}y={b}_{1}}\\{{a}_{21}x+{a}_{22}y={b}_{2}}\end{array}\right.$¿É±íʾ³É¾ØÕóÔËË㣨x£¬y£©$£¨\begin{array}{l}{{a}_{11}}&{{a}_{12}}\\{{a}_{21}}&{{a}_{22}}\end{array}£©$=£¨b1£¬b2£©£»
¢ÜÈôÇúÏßx2+4xy+2y2=1ÔÚ$£¨\begin{array}{l}{1}&{a}\\{b}&{1}\end{array}£©$×÷ÓÃϱ任³ÉÇúÏßx2-2y2=1£¬Ôòa+b=2£®
ÆäÖÐÕæÃüÌâµÄÐòºÅΪ¢Ù¢Ü£®£¨ÌîÉÏËùÓÐÕæÃüÌâµÄÐòºÅ£©

·ÖÎö ¢Ù£¨3£¬4£©$£¨\begin{array}{l}{1}&{2}\\{0}&{1}\end{array}£©$=£¨3¡Á1+4¡Á0£¬3¡Á2+4¡Á1£©=£¨3£¬10£©£¬´Ó¶øÅжϣ»
¢ÚÉèÇúÏßy=x2ÉϵĵãΪ£¨x1£¬y1£©£¬ÔÚ¾ØÕó$£¨\begin{array}{l}{1}&{0}\\{0}&{1}\end{array}£©$µÄ×÷ÓÃϵĵãΪ£¨x£¬y£©£»Ôò£¨x1£¬y1£©$£¨\begin{array}{l}{1}&{0}\\{0}&{1}\end{array}£©$=£¨x1£¬y1£©=£¨x£¬y£©£»´Ó¶øÅжϣ»
¢Û£¨x£¬y£©$£¨\begin{array}{l}{{a}_{11}}&{{a}_{12}}\\{{a}_{21}}&{{a}_{22}}\end{array}£©$=£¨xa11+ya21£¬xa12+ya22£©£¬´Ó¶øÅжϣ»
¢Üx2+4xy+2y2=1¿É»¯Îª£¨x+2y£©2-2y2=1£»´Ó¶ø¿ÉµÃ£¨x£¬y£©$£¨\begin{array}{l}{1}&{a}\\{b}&{1}\end{array}£©$=£¨x+2y£¬y£©£»´Ó¶øÇóa£¬b£»

½â´ð ½â£º¢Ù¡ß£¨3£¬4£©$£¨\begin{array}{l}{1}&{2}\\{0}&{1}\end{array}£©$=£¨3¡Á1+4¡Á0£¬3¡Á2+4¡Á1£©=£¨3£¬10£©£»
¡àµãP£¨3£¬4£©ÔÚ¾ØÕó$£¨\begin{array}{l}{1}&{2}\\{0}&{1}\end{array}£©$×÷ÓÃϵĵãΪ£¨3£¬10£©ÊÇÕæÃüÌ⣻
¢ÚÉèÇúÏßy=x2ÉϵĵãΪ£¨x1£¬y1£©£¬ÔÚ¾ØÕó$£¨\begin{array}{l}{1}&{0}\\{0}&{1}\end{array}£©$µÄ×÷ÓÃϵĵãΪ£¨x£¬y£©£»
Ôò£¨x1£¬y1£©$£¨\begin{array}{l}{1}&{0}\\{0}&{1}\end{array}£©$=£¨x1£¬y1£©=£¨x£¬y£©£»
¹ÊÂú×ã·½³Ìy=x2£¬
¹Ê¢ÚÊǼÙÃüÌ⣻
¢Û£¨x£¬y£©$£¨\begin{array}{l}{{a}_{11}}&{{a}_{12}}\\{{a}_{21}}&{{a}_{22}}\end{array}£©$=£¨xa11+ya21£¬xa12+ya22£©£»
¹Ê¢ÛÊǼÙÃüÌ⣻
¢Üx2+4xy+2y2=1¿É»¯Îª£¨x+2y£©2-2y2=1£»
Ôò£¨x£¬y£©$£¨\begin{array}{l}{1}&{a}\\{b}&{1}\end{array}£©$=£¨x+2y£¬y£©£»
¹Êb=2£¬a=0£»
¼´a+b=2£»
¹Ê¢ÜÊÇÕæÃüÌ⣻
¹Ê´ð°¸Îª£º¢Ù¢Ü£®

µãÆÀ ±¾Ì⿼²éÁ˾ØÕóÓë±ä»»µÄÓ¦Óã¬ÊôÓÚ»ù´¡Ì⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®Èçͼ1£¬ÔÚÖ±½ÇÌÝÐÎSABCÖУ¬¡ÏB=¡ÏC=$\frac{¦Ð}{2}$£¬DΪ±ßSCÉϵĵ㣬ÇÒAD¡ÍSC£¬ÏÖ½«¡÷SADÑØADÕÛÆðµ½´ïPADµÄλÖã¨ÕÛÆðºóµãS¼ÇΪP£©£¬²¢Ê¹µÃPA¡ÍAB£®
£¨1£©ÇóÖ¤£ºPD¡ÍÆ½ÃæABCD£»
£¨2£©ÒÑÖªPD=AD£¬PD+AD+DC=6£¬µ±Ïß¶ÎPBÈ¡µÃ×îСֵʱ£¬Çë½â´ðÒÔÏÂÎÊÌ⣺
¢ÙÉèµãEÂú×ã$\overrightarrow{BE}$=¦Ë$\overrightarrow{BP}$£¨0¡Ü¦Ë¡Ü1£©£¬ÔòÊÇ·ñ´æÔڦˣ¬Ê¹µÃÆ½ÃæEACÓëÆ½ÃæPDCËù³ÉµÄÈñ½ÇÊÇ$\frac{¦Ð}{3}$£¿Èô´æÔÚ£¬Çó³ö¦Ë£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£»
¢ÚÉèGÊÇADµÄÖе㣬ÔòÔÚÆ½ÃæPBCÉÏÊÇ·ñ´æÔÚµãF£¬Ê¹µÃFG¡ÍÆ½ÃæPBC£¿Èô´æÔÚ£¬È·¶¨µãFµÄλÖã¬Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÔÚËÄÀâ×¶P-ABCDÖУ¬µ×ÃæABCDÊÇÖ±½ÇÌÝÐΣ¬AB¡ÎDC£¬¡ÏABC=$\frac{¦Ð}{2}$£¬AD=2$\sqrt{2}$£¬AB=3DC=3£®
£¨1£©ÔÚÀâPBÉÏÈ·¶¨Ò»µãE£¬Ê¹µÃCE¡ÎÆ½ÃæPAD£»
£¨2£©ÈôPA=PD=$\sqrt{6}$£¬PB=PC£¬ÇóÖ±ÏßPAÓëÆ½ÃæPBCËù³É½ÇµÄ´óС£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÈçͼÊÇÇó$\frac{1}{1¡Á2}$+$\frac{1}{3¡Á4}$+$\frac{1}{5¡Á6}$+¡­+$\frac{1}{101¡Á102}$ÖµµÄ³ÌÐò¿òͼ£¬»Ø´ðÏÂÁÐÎÊÌ⣮

£¨1£©¸ÃË㷨ʹÓõÄÊÇʲôѭ»·½á¹¹£¿
£¨2£©·Ö±ðÔÚ¢Ù¡¢¢Ú¡¢¢Û´¦ÌîÉϺÏÊʵÄÓï¾ä£¬Ê¹Ö®ÄÜÍê³É¸ÃÌâµÄËã·¨¹¦ÄÜ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®ÒÑÖªµÈ±ÈÊýÁеÄǰnÏîºÍ¹«Ê½ÎªSn=1-$\frac{1}{{2}^{n}}$£¬Ôò¹«±Èq=$\frac{1}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®ÒÑÖªp£º0¡Ü2x-1¡Ü7£¬q£ºx2-£¨2a+3£©x+a2+3a¡Ü0£¨aΪ³£Êý£©£¬
£¨¢ñ£©ÈôpÊÇqµÄ³äÒªÌõ¼þ£¬ÇóaµÄÖµ£»
£¨¢ò£©Èô©VqÊÇpµÄ±ØÒª²»³ä·ÖÌõ¼þ£¬ÇóaµÄ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÒÑÖªÍÖÔ²C1£º$\frac{{x}^{2}}{{a}_{1}^2}$+$\frac{{y}^{2}}{{{b}_{1}}^{2}}$=1£¨a1£¾0£¬b2£¾0£©ÓëË«ÇúÏßC2£º£º$\frac{{x}^{2}}{{a}_{2}^2}$-$\frac{{y}^{2}}{{{b}_{2}}^{2}}$=1£¨a1£¾0£¬b2£¾0£©ÓÐÏàͬµÄ½¹µãF1£¬F2£¬µãPÊÇÁ½ÇúÏßµÄÒ»¸ö¹«¹²µã£¬e1£¬e2ÓÖ·Ö±ðÊÇÁ½ÇúÏßµÄÀëÐÄÂÊ£¬ÈôPF1¡ÍPF2£¬Ôò4e12+e22µÄ×îСֵ£¨¡¡¡¡£©
A£®$\frac{5}{2}$B£®4C£®$\frac{9}{2}$D£®9

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®Á½Ö±Ïßax+by+4=0ºÍ£¨1-a£©x-y-b=O¶¼Æ½ÐÐÓÚx+2y+3=0£¬Ôò£¨¡¡¡¡£©
A£®$\left\{\begin{array}{l}{a=\frac{2}{3}}\\{b=-3}\end{array}\right.$B£®$\left\{\begin{array}{l}{a=\frac{3}{2}}\\{b=-3}\end{array}\right.$C£®$\left\{\begin{array}{l}{a=-\frac{3}{2}}\\{b=3}\end{array}\right.$D£®$\left\{\begin{array}{l}{a=\frac{3}{2}}\\{b=3}\end{array}\right.$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®Ö±ÈýÀâÖùABC-A1B1C1ÖУ¬AA1=AC£¬AB¡ÍAC£¬D£¬E·Ö±ðÊÇA1C1£¬BCµÄÖе㣮
£¨¢ñ£©ÇóÖ¤£ºC1E¡ÎÆ½ÃæDAB£»
£¨¢ò£©ÔÚÏß¶ÎA1AÉÏÊÇ·ñ´æÔÚµãG£¬Ê¹µÃÆ½ÃæBCG¡ÍÆ½ÃæABD£¿Èô´æÔÚ£¬ÊÔÈ·¶¨µãGµÄλÖã»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸