【题目】为了检测某种产品的质量(单位:千克),抽取了一个容量为N的样本,整理得到的数据作出了频率分布表和频率分布直方图如图:
分组 | 频数 | 频率 |
[17.5,20) | 10 | 0.05 |
[20,225) | 50 | 0.25 |
[22.5,25) | a | b |
[25,27.5) | 40 | c |
[27.5,30] | 20 | 0.10 |
合计 | N | 1 |
(Ⅰ)求出表中N及a,b,c的值;
(Ⅱ)求频率分布直方图中d的值;
(Ⅲ)从该产品中随机抽取一件,试估计这件产品的质量少于25千克的概率.
【答案】解:(Ⅰ)由频率分布表得: ,
解得N=200,a=80,b=0.4,c=0.2.
(Ⅱ)由频率分布表得[25,27.5)频率为0.2,
∴d= =0.08.
(Ⅲ)由频率分布表知产品的质量不少于25千克的频率为0.2+0.1=0.3,
∴从该产品中随机抽取一件,
估计这件产品的质量少于25千克的概率p=1﹣0.3=0.7.
【解析】(Ⅰ)根据频率= ,由频率分布表能求出表中N及a,b,c的值.(Ⅱ)由频率分布表得[25,27.5)频率为0.2,由此能求出频率分布图中的d的值.(Ⅲ)由频率分布表知产品的质量不少于25千克的频率为0.2+0.1=0.3,从该产品中随机抽取一件,由此能估计这件产品的质量少于25千克的概率.
科目:高中数学 来源: 题型:
【题目】设函数f(x)=﹣ sinx cosx+1 (Ⅰ)求函数f(x)的最小正周期和单调递增区间;
(Ⅱ)若x∈[0, ],且f(x)= ,求cosx的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知命题p:方程x2+y2﹣ax+y+1=0表示圆;命题q:方程2ax+(1﹣a)y+1=0表示斜率大于1的直线,若p∨q为真命题,p∧q为假命题,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,F1 , F2是双曲线C: (a>0,b>0)的左、右焦点,过F1的直线l与C的左、右两支分别交于A,B两点.若△ABF2为等边三角形,则双曲线的离心率为( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知条件p:x2﹣3x﹣4≤0;条件q:x2﹣6x+9﹣m2≤0,若p是q的充分不必要条件,则m的取值范围是( )
A.[﹣1,1]
B.[﹣4,4]
C.(﹣∞,﹣1]∪[1,+∞)
D.(﹣∞,﹣4]∪[4,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知p:x∈R,cos2x﹣sinx+2≤m;q:函数 在[1,+∞)上单调递减.
(I)若p∧q为真命题,求m的取值范围;
(II)若p∨q为真命题,p∧q为假命题,求m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在△ABC中,∠ABC=90°,AB= ,BC=1,P为△ABC内一点,∠BPC=90°.
(1)若PB= ,求PA;
(2)若∠APB=150°,求tan∠PBA.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在锐角三角形ABC中,角A,B,C的对边分别为a,b,c,且acosC,bcosB,ccosA成等差数列.
(1)求角B的大小;
(2)求2sin2A+cos(A﹣C)的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com