精英家教网 > 高中数学 > 题目详情
5.已知△ABC中,点A的坐标为(1,5),边BC所在直线方程为x-2y=0,边BA所在直线2x-y+m=0过点(-1,1)
(Ⅰ)求点B的坐标
(Ⅱ)求向量$\overrightarrow{BA}$在向量$\overrightarrow{BC}$方向上的投影.

分析 (Ⅰ)首先求出m,然后通过解方程组求出B的坐标;
(Ⅱ)求出$\overrightarrow{BA}$以及在向量$\overrightarrow{BC}$方向上共线的方向向量,利用数量积的几何意义求投影.

解答 解:(Ⅰ)由边BA所在直线2x-y+m=0过点(-1,1)得到-2-1+m=0解得m=3,由$\left\{\begin{array}{l}{x-2y=0}\\{2x-y+3=0}\end{array}\right.$得到B(-2,-1);
(Ⅱ)由(Ⅰ)得到$\overrightarrow{BA}$=(3,6),选择向量$\overrightarrow{BC}$方向上的一个向量为$\overrightarrow{m}$=(2,1).
所以向量$\overrightarrow{BA}$在向量$\overrightarrow{BC}$方向上的投影为:|$\frac{\overrightarrow{BA}•\overrightarrow{m}}{|\overrightarrow{m}|}$|=$\frac{12\sqrt{5}}{5}$.

点评 本题考查了直线的交点以及平面向量的投影的求法;正确利用数量积的几何意义是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知扇形的周长为4,当扇形的面积最大时,扇形的圆心角α等于(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知$\overrightarrow a=(m-1,1)$,$\overrightarrow b=(n,-1)$,且m>0,n>0,若$\overrightarrow a∥\overrightarrow b$,则$\frac{1}{m}+\frac{9}{n}$的最小值为(  )
A.12B.16C.20D.25

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知矩阵A=$[\begin{array}{l}{a}&{b}\\{c}&{d}\end{array}]$,若矩阵A属于特征值λ1=3的一个特征向量为$\overrightarrow{α}$1=$[\begin{array}{l}{1}\\{1}\end{array}]$,属于特征值λ2=1的一个特征向量$\overrightarrow{α}$2=
$[\begin{array}{l}{1}\\{-1}\end{array}]$.
(1)求矩阵A;
(2)若向量$\overrightarrow{β}$=$[\begin{array}{l}{4}\\{2}\end{array}]$,求A2017β.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.一个几何体的三视图如图所示,则该几何体的体积为(  )
A.12B.9C.6D.36

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.几位大学生响应国家的创业号召,开发了一款应用软件,为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动,这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,在接下来的三项式26,21,22,依此类推,求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是(  )
A.110B.220C.330D.440

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知圆x2+y2=4与直线3x-4y+c=0相交于A、B两点,若∠AOB=90°(其中O为坐标原点),则实数c的值为(  )
A.±5B.±5$\sqrt{2}$C.±10D.±10$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.用三段论进行如下推理:“对数函数y=logax(a>0,且a≠1)是增函数,因为y=log${\;}_{\frac{1}{2}}$x是对数函数,所以y=log${\;}_{\frac{1}{2}}$x是增函数.”你认为这个推理(  )
A.大前提错误B.小前提错误C.推理形式错误D.是正确的

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.随着智能手机的发展,微信越来越成为人们交流的一种方式.某机构对使用微信交流的态度进行调查,随机调查了50人,他们年龄的频数分布及对使用微信交流赞成人数如表:
年龄(岁)[15,25)[25,35)[35,45)[45,55)[55,65)[65,75)
频数510151055
赞成人数51012721
(1)由以上统计数据填写下面2×2列联表,并判断是否有99%的把握认为年龄45岁为分界点对使用微信交流的态度有差异:
年龄不低于45岁的人年龄低于45岁的人合计
赞成
不赞成
合计
(2)若对年龄在[55,65),[65,75)的被调查人中各抽取一人进行追踪调查,求选中的2人中至少有一人赞成使用微信交流的概率.
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
参考数据:
P(K2≥k00.0500.0100.001
k03.8416.63510.828

查看答案和解析>>

同步练习册答案