精英家教网 > 高中数学 > 题目详情
14.用三段论进行如下推理:“对数函数y=logax(a>0,且a≠1)是增函数,因为y=log${\;}_{\frac{1}{2}}$x是对数函数,所以y=log${\;}_{\frac{1}{2}}$x是增函数.”你认为这个推理(  )
A.大前提错误B.小前提错误C.推理形式错误D.是正确的

分析 根据题意,由对数函数的性质分析可得该推理的大前提错误,即可得答案.

解答 解:根据题意,由对数函数的性质:当a>1时,对数函数y=logax在(0,+∞)上是增函数,
当0<a<1时,对数函数y=logax在(0,+∞)上是减函数,
故推理的大前提是错误的;
而小前提正确,
故选:A.

点评 本题考查演绎推理的应用,关键是掌握演绎推理的形式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=|2x-a|,g(x)=x+1.
(1)若a=1,求不等式f(x)≤1的解集;
(2)对任意的x∈R,f(x)+|g(x)|≥a2+2a(a>0)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知△ABC中,点A的坐标为(1,5),边BC所在直线方程为x-2y=0,边BA所在直线2x-y+m=0过点(-1,1)
(Ⅰ)求点B的坐标
(Ⅱ)求向量$\overrightarrow{BA}$在向量$\overrightarrow{BC}$方向上的投影.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若复数$\frac{m+2i}{1-i}$为实数(i为虚数单位),则实数m等于(  )
A.1B.2C.-1D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知某厂生产的电子产品的使用寿命X(单位:小时)服从正态分布N(1000,σ2),且P(X<800)=0.1,P(X≥1300)=0.02.
(1)现从该厂随机抽取一件产品,求其使用寿命在[1200,1300)的概率;
(2)现从该厂随机抽取三件产品,记抽到的三件产品使用寿命在[800,1200)的件数为Y,求Y的分布列和数学期望E(Y).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在△ABC中,A,B,C的对边分别是a,b,c,已知b+acosC=0,sinA=2sin(A+C),则$\frac{c}{a}$的值为(  )
A.$\frac{\sqrt{7}}{2}$B.$\frac{\sqrt{7}}{3}$C.$\frac{\sqrt{5}}{2}$D.$\frac{\sqrt{5}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知△ABC的三条边长a,b,c,证明:$\frac{|{a}^{2}-{b}^{2}|}{c}$+$\frac{|{b}^{2}-{c}^{2}|}{a}$≥$\frac{|{c}^{2}-{a}^{2}|}{b}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若动点A(x1,y1),B(x2,y2)分别在直线l1:x-y-11=0和l2:x-y-1=0上移动,则AB中点M所在直线方程为(  )
A.x-y-6=0B.x+y+6=0C.x-y+6=0D.x+y-6=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.5张卡片上分别标有号码1,2,3,4,5,现从中任取3张,则3张卡片中最大号码为4的概率是(  )
A.$\frac{1}{5}$B.$\frac{3}{10}$C.$\frac{3}{5}$D.$\frac{1}{10}$

查看答案和解析>>

同步练习册答案