精英家教网 > 高中数学 > 题目详情
9.已知某厂生产的电子产品的使用寿命X(单位:小时)服从正态分布N(1000,σ2),且P(X<800)=0.1,P(X≥1300)=0.02.
(1)现从该厂随机抽取一件产品,求其使用寿命在[1200,1300)的概率;
(2)现从该厂随机抽取三件产品,记抽到的三件产品使用寿命在[800,1200)的件数为Y,求Y的分布列和数学期望E(Y).

分析 (1)X~正态分布N(1000,σ2),且P(X<800)=0.1,P(X≥1300)=0.02.可得P(1200≤X<1300)+P(X≥1300)=P(X≥1200)=P(X<800).即可得出P(1200≤X<1300).
(2)P(800≤X<1200)=1-2P(X<800)=$\frac{4}{5}$.可得Y~B$(3,\frac{4}{5})$.P(Y=k)=${∁}_{3}^{k}(\frac{4}{5})^{k}•(\frac{1}{5})^{3-k}$,(k=0,1,2,3).即可得出.

解答 解:(1)∵X~正态分布N(1000,σ2),且P(X<800)=0.1,P(X≥1300)=0.02.
∴P(1200≤X<1300)+P(X≥1300)=P(X≥1200)=P(X<800)=0.1.
∴P(1200≤X<1300)=0.1-0.02=0.08.
即使用寿命在[1200,1300)的概率为0.08.
(2)∵P(800≤X<1200)=1-2P(X<800)=1-2×0.1=0.8=$\frac{4}{5}$.
∴Y~B$(3,\frac{4}{5})$.∴P(Y=k)=${∁}_{3}^{k}(\frac{4}{5})^{k}•(\frac{1}{5})^{3-k}$,(k=0,1,2,3).
P(Y=0)=$(\frac{1}{5})^{3}$=$\frac{1}{125}$,P(Y=1)=${∁}_{3}^{1}×\frac{4}{5}×(\frac{1}{5})^{2}$=$\frac{12}{125}$,同理可得:P(Y=2)=$\frac{48}{125}$,P(Y=3)=$\frac{64}{125}$.
所以Y分布列:

 Y 0 1 2 3
 P(Y) $\frac{1}{125}$ $\frac{12}{125}$ $\frac{48}{125}$ $\frac{64}{125}$
EY=$3×\frac{4}{5}$=$\frac{12}{5}$.

点评 本题考查了正态分布的性质及其应用、二项分布列及其数学期望,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知复数z满足(1+2i)z=3+4i,则|$\overline{z}$|等于(  )
A.2B.5C.$\frac{\sqrt{5}}{5}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.一个几何体的三视图如图所示,则该几何体的体积为(  )
A.12B.9C.6D.36

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知圆x2+y2=4与直线3x-4y+c=0相交于A、B两点,若∠AOB=90°(其中O为坐标原点),则实数c的值为(  )
A.±5B.±5$\sqrt{2}$C.±10D.±10$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列关于正态分布叙述不正确的是(  )
A.正态曲线y=φμ,σ(x)关于直线x=μ对称
B.正态曲线与x轴之间的面积是1
C.正态分布随机变量等于一个特定实数的概率是0
D.正态曲线在对称轴处取得最大值$\frac{1}{\sqrt{2π}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.用三段论进行如下推理:“对数函数y=logax(a>0,且a≠1)是增函数,因为y=log${\;}_{\frac{1}{2}}$x是对数函数,所以y=log${\;}_{\frac{1}{2}}$x是增函数.”你认为这个推理(  )
A.大前提错误B.小前提错误C.推理形式错误D.是正确的

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在△ABC中,边BC=2,A=$\frac{π}{6}$,若AC的长使得该三角形有唯一解,则AC的长的取值范围为(0,2]∪{4}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知双曲线正弦函数shx=$\frac{{e}^{x}-{e}^{-x}}{2}$和双曲余弦函数chx=$\frac{{e}^{x}+{e}^{-x}}{2}$与我们学过的正弦函数和余弦函数有许多类似的性质,则下列类比结论中错误的是(  )
A.shx为奇函数,chx为偶函数B.sh2x=2shxchx
C.sh(x-y)=shxchy-chxshyD.ch(x-y)=chxchy+shxshy

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.为了得到函数y=sin(2x-$\frac{π}{3}$)的图象,只需把函数y=sin2x的图象(  )
A.向左平移$\frac{π}{3}$个单位长度B.向右平移$\frac{π}{3}$个单位长度
C.向左平移$\frac{π}{6}$个单位长度D.向右平移$\frac{π}{6}$个单位长度

查看答案和解析>>

同步练习册答案