精英家教网 > 高中数学 > 题目详情
已知某几何体的直观图和三视图如图所示,其正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形.
(1)证明:BN⊥平面C1B1N;  
(2)求二面角B1-CN-A的正弦值.
考点:二面角的平面角及求法,直线与平面垂直的判定
专题:空间位置关系与距离,空间角
分析:(1)由题意∠BNB1为直角,B1C1⊥BN,由此能证明BN⊥面C1B1N.
(2)以B为原点,BA为x轴,BB1为y轴,BC为z轴,建立空间直角坐标系,利用向量法能求出二面角B1-CN-A的正弦值.
解答: (1)证明:由题意:该几何体的正视图其正视图为矩形,
侧视图为等腰直角三角形,
俯视图为直角梯形.
则B1C1⊥面ABB1N,且在ABB1N内,
∴∠BNB1为直角
∵B1C1⊥面ABB1N且BN?面ABB1N,
∴B1C1⊥BN,又∵BN⊥B1N,且B1N∩B1C1=B1
∴BN⊥面C1B1N
(2)解:以B为原点,BA为x轴,BB1为y轴,
BC为z轴,建立空间直角坐标系,
由已知得B1(0,8,0),C(0,0,4),
N(4,4,0),A(4,0,0),
CN
=(4,4,-4),
CB1
=(0,8,-4),
CA
=(4,0,-4),
设平面CNB1的法向量
m
=(x,y,z)

m
CN
=4x+4y-4z=0
m
CB1
=8y-4z=0

取y=1,得
m
=(1,1,2),
设平面CNA的法向量
n
=(a,b,c),
n
CN
=4a+4b-4c=0
n
CA
=4a-4c=0

取a=1,得
n
=(1,0,1),
设二面角B1-CN-A的平面角为θ.
cosθ=
m
n
|
m
||
n
|
=
3
2
,∴sinθ=
1-
3
4
=
1
2

∴二面角B1-CN-A的正弦值为
1
2
点评:本题考查直线与平面垂直的证明,考查二面角的正弦值的求法,解题时要认真审题,注意向量法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知Sn是等差数列{an}n∈N*的前n项和,且S6>S7>S5,给出下列五个命题:
①d<0;②S11>0;③S12<0;④数列{Sn}中最大项为S11;⑤|a6|>|a7|,
其中正确命题的个数(  )
A、5B、4C、3D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合M={x∈R|(x+1)(x-2)>0}和N={x∈R|x2+x<0},则集合M是集合N的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:
①△ABC中,A>B是sinA>sinB成立的充要条件;
②当x>0且x≠1时,有lnx+
1
lnx
≥2;
③已知Sn是等差数列{an}的前n项和,若S7>S5,则S9>S3
④若函数y=f(x-
3
2
)
为R上的奇函数,则函数y=f(x)的图象一定关于点F(
3
2
,0)
成中心对称.
其中所有正确命题的序号为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,A处为我军一炮兵阵地,距A处1000米的C处有一小山,山高为580米,在山的另一侧距C处3000米有敌武器库B,且A、B、C在同一水平直线删个,已知我炮兵轰击敌武器库是一段抛物线,这段抛物线的最大高度OE为800米.
(1)求这条抛物线的方程;
(2)问炮弹沿着这段话抛物线飞行是否会与小山碰撞?

查看答案和解析>>

科目:高中数学 来源: 题型:

设x=m和x=n是函数f(x)=lnx+
1
2
x2-(a+2)x的两个极值点,其中m<n,a∈R.
(1)若a>0,求 f(m)+f(n)的取值范围;
(2)若n≥
e
,求f(n)-f(m)的最大值(注e是自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的中心是坐标原点O,它的短轴长为2
2
,一个焦点F的坐标为(c,0)(c>0),一个定点A的坐标为(
10
c
-c,0)
,且
OF
=2
FA,
过点A的直线与椭圆相交于P,Q两点:
(1)求椭圆的方程和离心率;
(2)如果OP⊥OQ,求直线PQ的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

若cos(x+y)cos(x-y)=
1
3
,则cos2x-sin2y=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

点P是函数y=x+
4
x
图象上任意一点,过点P分别向直线y=x和y轴作垂线,垂足分别为A,B,则
PA
PB
=
 

查看答案和解析>>

同步练习册答案