精英家教网 > 高中数学 > 题目详情
给出下列四个命题:
①△ABC中,A>B是sinA>sinB成立的充要条件;
②当x>0且x≠1时,有lnx+
1
lnx
≥2;
③已知Sn是等差数列{an}的前n项和,若S7>S5,则S9>S3
④若函数y=f(x-
3
2
)
为R上的奇函数,则函数y=f(x)的图象一定关于点F(
3
2
,0)
成中心对称.
其中所有正确命题的序号为
 
考点:命题的真假判断与应用
专题:函数的性质及应用,等差数列与等比数列,解三角形,简易逻辑
分析:由三角形中的大边对大角结合正弦定理判断①;举反例说明②错误;根据等差数列的性质可说明③正确;直接由函数图象的平移说明④错误.
解答: 解:对于①,由A>B,得边a>边b(大角对大边),
根据正弦定理知:
a
sinA
=
b
sinB

则sinA>sinB;
由sinA>sinB,根据正弦定理知:
a
sinA
=
b
sinB

则边a>边b,根据大边对大角,则有A>B.
∴△ABC中,A>B是sinA>sinB成立的充要条件.命题①正确;
对于②,若0<x<1,则lnx<0,lnx+
1
lnx
≥2不成立.命题②错误;
对于③,等差数列{an}若S7>S5,则2a1+11d>0,则S9-S3=6a1+33d>0,即S9>S3,命题③正确;
对于④,函数y=f(x-
3
2
)为R上的奇函数,则其图象关于(0,0)中心对称,
而函数y=f(x)的图象是把y=f(x-
3
2
)的图象向左平移
3
2
个单位得到的,
∴函数y=f(x)的图象一定关于点F(-
3
2
,0)成中心对称.命题④错误.
故答案为:①③
点评:本题考查了命题的真假判断与应用,考查了充分必要条件的判断方法,考查了函数图象的平移,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=(
1
9
x-2a(
1
3
x+3.x∈[-1,1].
(1)若f(x)的最小值记h(a),求h(a)的解析式;
(2)是否存在实数m,n同时满足以下条件:①log3m>log3n>1;②当h(a)的定义域为[n,m]时,值域为[n2,m2];若存在,求出m,n的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

若数列{an}是等差数列,则“a1<a2”是“数列{an}为递增数列”(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥S-ABC中,SA⊥底面ABC,AB⊥AC.
(1)求证:AB⊥平面SAC;
(2)设SA=AB=AC=1,求点A到平面SBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=log
1
2
(4x-x2)
的递减区间为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

求证:
5
+
7
>3+
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知某几何体的直观图和三视图如图所示,其正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形.
(1)证明:BN⊥平面C1B1N;  
(2)求二面角B1-CN-A的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知锐角△ABC中,∠A=
π
3
,求sinB+sinC的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

给定抛物线C:y2=4x,F是C的焦点,O是坐标原点,过点F的直线l与C交于A、B两点,若l的法向量
n
=(1,1).求:
(1)直线l的方程;
(2)求
OA
OB

查看答案和解析>>

同步练习册答案