精英家教网 > 高中数学 > 题目详情
14.若等差数列{an}的前n项和Sn满足S4≤4,S6≥12,则a4的最小值为(  )
A.2B.$\frac{7}{2}$C.3D.$\frac{5}{2}$

分析 利用等差数列的通项公式列出不等式组,能求出a4的最小值.

解答 解:∵等差数列{an}的前n项和Sn满足S4≤4,S6≥12,
∴$\left\{\begin{array}{l}{4{a}_{1}+\frac{4×3}{2}d≤4}\\{6{a}_{1}+\frac{6×5}{2}d≥12}\end{array}\right.$,
解得a1$≤-\frac{1}{2}$,d≥1,
由${S}_{6}=6{a}_{1}+\frac{6×5}{2}d$≥12,
得2a1+5a=2(a1+3d)-d=2a4-d≥4
∴a4≥2+$\frac{d}{2}$≥2+$\frac{1}{2}$=$\frac{5}{2}$.
∴a4的最小值为$\frac{5}{2}$.
故选:D.

点评 本题考查等差数列的第四项的最小值的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知点A(-1,-2)在抛物线C:y2=2px的准线上,记C的焦点为F,过点F且与x轴垂直的直线与抛物线交于M,N两点,则线段MN的长为(  )
A.4B.$2\sqrt{3}$C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知$f(x)=x{e^{ax}}-\frac{a}{2}{x^2}$-x+1,a≠0
(Ⅰ)当a=1时,求f(x)的单调区间;
(Ⅱ)若?x0>1,使$f({x_0})<\frac{a}{2}$成立,求参数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设复数z=1+i,则复数z+$\frac{1}{z}$的虚部是$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某中学为研究学生的身体素质与课外体育锻炼时间的关系,对该校200名高三学生的课外体育锻炼平均每天运动的时间进行调查,如表:(平均每天锻炼的时间单位:分钟)
平均每天锻炼
的时间(分钟)
[0,10)[10,20)[20,30)[30,40)[40,50)[50,60)
总人数203644504010
将学生日均课外体育运动时间在[40,60)上的学生评价为“课外体育达标”.
(1)请根据上述表格中的统计数据填写下面2×2列联表,并通过计算判断是否能在犯错误的概率不超
过0.01的前提下认为“课外体育达标”与性别有关?
课外体育不达标课外体育达标合计
20110
合计
(2)将上述调查所得到的频率视为概率.现在从该校高三学生中,抽取3名学生,记被抽取的3名学生中的“课外体育达标”学生人数为X,若每次抽取的结果是相互独立的,求X的数学期望.
独立性检验界值表:
P(K2≥k00.500.400.250.150.100.050.0250.0100.0050.001
k00.4550.7081.3232.0722.7063.8415.0246.6357.87910.828
(参考公式:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在${({3\sqrt{x}+\frac{1}{x}})^n}$的展开式中,各项系数的和为p,其二项式系数之和为q,若64是p与q的等比中项,则n=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.以下式子正确的个数是(  )
①($\frac{1}{x}$)′=$\frac{1}{{x}^{2}}$  ②(cosx)′=-sinx   ③(2x)′=2xln2  ④(lgx)′=$\frac{-1}{xln10}$.
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.关于残差和残差图,下列说法正确的是(  )
(1)残差就是随机误差
(2)残差图的纵坐标是残差
(3)残差点均匀分布的带状区域的宽度越窄,说明模型拟合精度越高
(4)残差点均匀分布的带状区域的宽度越窄,说明模型拟合精度越低.
A.(1)(2)B.(3)(4)C.(2)(3)D.(2)(4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.两座灯塔A和B与海洋观察站C的距离分别为10km和20km,灯塔A在观察站C的北偏东15°方向上,灯塔B在观察站C的南偏西75°方向上,则灯塔A与灯塔B的距离为(  )
A.10$\sqrt{5}$kmB.10$\sqrt{7}$kmC.10$\sqrt{3}$kmD.30km

查看答案和解析>>

同步练习册答案