4£®Ä³ÊÐ˾·¨²¿ÃÅΪÁËÐû´«¡¶ÏÜ·¨¡·¾Ù°ì·¨ÂÉ֪ʶÎÊ´ð»î¶¯£¬Ëæ»ú¶Ô¸ÃÊÐ18¡«68ËêµÄÈËȺ³éȡһ¸öÈÝÁ¿ÎªnµÄÑù±¾£¬²¢½«Ñù±¾Êý¾Ý·Ö³ÉÎå×飺[18£¬28£©£¬[28£¬38£©£¬[38£¬48£©£¬[48£¬58£©£¬[58£¬68]£¬ÔÙ½«Æä°´´Ó×óµ½ÓÒµÄ˳Ðò·Ö±ð±àºÅΪµÚ1×飬µÚ2×飬¡­£¬µÚ5×飬»æÖÆÁËÑù±¾µÄƵÂÊ·Ö²¼Ö±·½Í¼£»²¢¶Ô»Ø´ðÎÊÌâÇé¿ö½øÐÐͳ¼Æºó£¬½á¹ûÈçϱíËùʾ£®
×éºÅ·Ö×黨´ðÕýÈ·µÄÈËÊý»Ø´ðÕýÈ·
µÄÈËÊýÕ¼±¾
×éµÄ±ÈÀý
µÚ1×é[18£¬28£©50.5
µÚ2×é[28£¬38£©18a
µÚ3×é[38£¬48£©270.9
µÚ4×é[48£¬58£©x0.36
µÚ5×é[58£¬68]30.2
£¨¢ñ£©·Ö±ðÇó³öa£¬xµÄÖµ£»
£¨¢ò£©µÚ2£¬3£¬4×黨´ðÕýÈ·µÄÈËÖÐÓ÷ֲã³éÑù·½·¨³éÈ¡6ÈË£¬ÔòµÚ2£¬3£¬4×éÿ×éÓ¦¸÷³éÈ¡¶àÉÙÈË£¿
£¨III£©ÔÚ£¨ II£©µÄǰÌáÏ£¬¾ö¶¨ÔÚËù³éÈ¡µÄ6ÈËÖÐËæ»ú³éÈ¡2È˰䷢ÐÒÔ˽±£¬ÇóËù³éÈ¡µÄÈËÖеÚ2×éÖÁÉÙÓÐ1ÈË»ñµÃÐÒÔ˽±µÄ¸ÅÂÊ£®

·ÖÎö £¨¢ñ£©ÏÈÇó³öµÚ1×éÈËÊýΪ10£¬ÓÉ´ËÄÜÇó³öa£¬xµÄÖµ£®
£¨¢ò£©µÚ2£¬3£¬4×黨´ðÕýÈ·µÄÈËÊýµÄ±ÈΪ18£º27£º9=2£º3£º1£¬ÓÉ´ËÄÜÇó³öµÚ2£¬3£¬4×éÿ×éÓ¦¸÷ÒÀ´Î³éÈ¡µÄÈËÊý£®
£¨¢ó£©¼Ç¡°Ëù³éÈ¡µÄÈËÖеÚ2×éÖÁÉÙÓÐ1ÈË»ñµÃÐÒÔ˽±¡±ÎªÊ¼þA£¬³éÈ¡µÄ6ÈËÖУ¬µÚ2 ×éµÄÉèΪa1£¬a2£¬µÚ3×éµÄÉèΪb1£¬b2£¬b3£¬µÚ4×éµÄÉèΪc£¬ÀûÓÃÁоٷ¨Çó³ö´Ó6ÃûÐÒÔËÕßÖÐÈÎÈ¡2ÃûµÄËùÓпÉÄܵÄÇé¿öÓÐ15ÖÖ£¬ÔÙÀûÓÃÁоٷ¨Çó³öµÚ2×éÖÁÉÙÓÐ1È˵ÄÇé¿öÓÐ9ÖÖ£¬ÓÉ´ËÄÜÇó³öËù³éÈ¡µÄÈËÖеÚ2×éÖÁÉÙÓÐ1ÈË»ñµÃÐÒÔ˽±µÄ¸ÅÂÊ£®

½â´ð ½â£º£¨¢ñ£©µÚ1×éÈËÊý5¡Â0.5=10£¬
ËùÒÔ10¡Â0.1=100£¬
µÚ2×鯵ÂÊΪ£º0.2£¬ÈËÊýΪ£º100¡Á0.2=20£¬
ËùÒÔ18¡Â20=0.9£¬¡­£¨2·Ö£©
µÚ4×éÈËÊý100¡Á0.25=25£¬
ËùÒÔx=25¡Á0.36=9£®¡­£¨4·Ö£©
£¨¢ò£©µÚ2£¬3£¬4×黨´ðÕýÈ·µÄÈËÊýµÄ±ÈΪ18£º27£º9=2£º3£º1£¬¡­£¨5·Ö£©
ËùÒÔµÚ2£¬3£¬4×éÿ×éÓ¦¸÷ÒÀ´Î³éÈ¡2ÈË£¬3ÈË£¬1ÈË£®¡­£¨7·Ö£©
£¨¢ó£©¼Ç¡°Ëù³éÈ¡µÄÈËÖеÚ2×éÖÁÉÙÓÐ1ÈË»ñµÃÐÒÔ˽±¡±ÎªÊ¼þA£¬
³éÈ¡µÄ6ÈËÖУ¬µÚ2 ×éµÄÉèΪa1£¬a2£¬µÚ3×éµÄÉèΪb1£¬b2£¬b3£¬
µÚ4×éµÄÉèΪc£¬Ôò´Ó6ÃûÐÒÔËÕßÖÐÈÎÈ¡2ÃûµÄËùÓпÉÄܵÄÇé¿öÓÐ15ÖÖ£¬ËüÃÇÊÇ£º
£¨a1£¬a2£©£¬£¨a1£¬b1£©£¬£¨a1£¬b2£©£¬£¨a1£¬b3£©£¬£¨a1£¬c£©£¬£¨a2£¬b1£©£¬£¨a2£¬b2£©£¬£¨a2£¬b3£©£¬
£¨a2£¬c£©£¬£¨b1£¬b2£©£¬£¨b1£¬b3£©£¬£¨b1£¬c£©£¬£¨b2£¬b3£©£¬£¨b2£¬b3£©£¬£¨b2£¬c£©£¬£¨b3£¬c£©£® ¡­£¨9·Ö£©
ÆäÖеÚ2×éÖÁÉÙÓÐ1È˵ÄÇé¿öÓÐ9ÖÖ£¬
ËûÃÇÊÇ£º£¨a1£¬a2£©£¬£¨a1£¬b1£©£¬£¨a1£¬b2£©£¬£¨a1£¬b3£©£¬£¨a1£¬c£©£¬
£¨a2£¬b1£©£¬£¨a2£¬b2£©£¬£¨a2£¬b3£©£¬£¨a2£¬c£©£®   ¡­£¨10·Ö£©
Ëù³éÈ¡µÄÈËÖеÚ2×éÖÁÉÙÓÐ1ÈË»ñµÃÐÒÔ˽±µÄ¸ÅÂÊp£¨A£©=$\frac{9}{15}$=$\frac{3}{5}$£®   ¡­£¨12·Ö£©

µãÆÀ ±¾Ì⿼²é·Ö²ã³éÑù¡¢ÆµÂÊ·Ö²¼Ö±·½Í¼µÄÓ¦Ó㬿¼²é¸ÅÂʵÄÇ󷨣¬ÊÇ»ù´¡Ì⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâÁоٷ¨µÄºÏÀíÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÃüÌâ¡°´æÔÚx¡Ê£¨0£¬+¡Þ£©£¬Ê¹µÃlnx£¾x-2¡±µÄ·ñ¶¨ÊÇ£¨¡¡¡¡£©
A£®¶ÔÈÎÒâx¡Ê£¨0£¬+¡Þ£©£¬¶¼ÓÐlnx£¼x-2B£®¶ÔÈÎÒâx¡Ê£¨0£¬+¡Þ£©£¬¶¼ÓÐlnx¡Üx-2
C£®´æÔÚx¡Ê£¨0£¬+¡Þ£©£¬Ê¹µÃlnx£¼x-2D£®´æÔÚx¡Ê£¨0£¬+¡Þ£©£¬Ê¹µÃlnx¡Üx-2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®Ä³ÈýÀâ×¶µÄÈýÊÓͼÈçͼËùʾ£¬¸ÃÈýÀâ×¶µÄÌå»ýÊÇ£¨¡¡¡¡£©
A£®$\frac{4}{3}$B£®$\frac{8}{3}$C£®4D£®$6+2\sqrt{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®ÇóÖµ£º$sin[{arccos£¨{-\frac{2}{3}}£©}]$=$\frac{\sqrt{5}}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÒÑÖªÊýÁÐ{an}µÄͨÏʽΪ${a_n}={£¨{\frac{3}{4}}£©^{n-1}}[{{{£¨{\frac{3}{4}}£©}^{n-1}}-1}]$£¬Ôò¹ØÓÚanµÄ×î´óÏî¡¢×îСÏîÐðÊöÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®×î´óÏîΪa1¡¢×îСÏîΪa3B£®×î´óÏîΪa1¡¢×îСÏî²»´æÔÚ
C£®×î´óÏî²»´æÔÚ¡¢×îСÏîΪa3D£®×î´óÏîΪa1¡¢×îСÏîΪa4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®ÕýʵÊýx£¬yÂú×ã2x+y=2£¬Ôò$x+\sqrt{{x^2}+{y^2}}$µÄ×îСֵ$\frac{8}{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®ÒÑÖªA£¨-1£¬1£¬1£©£¬B£¨0£¬1£¬1£©Ôò|AB|=1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®ÒÑ֪˫ÇúÏßx2-y2=1£¬µãF1£¬F2ΪÆäÁ½¸ö½¹µã£¬µãPΪ˫ÇúÏßÉÏÒ»µã£¬Èô¡ÏF1PF2=60¡ã£¬ÔòÈý½ÇÐÎF1PF2µÄÃæ»ýΪ£¨¡¡¡¡£©
A£®2B£®2$\sqrt{2}$C£®$\sqrt{3}$D£®2$\sqrt{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÒÑÖªÍÖÔ²¦££º$\frac{x^2}{a^2}$+y2=1£¨a£¾1£©µÄ×ó½¹µãΪF1£¬ÓÒ¶¥µãΪA1£¬É϶¥µãΪB1£¬¹ýF1£¬A1£¬B1ÈýµãµÄÔ²PµÄÔ²ÐÄ×ø±êΪ£¨$\frac{{\sqrt{3}-\sqrt{2}}}{2}$£¬$\frac{{1-\sqrt{6}}}{2}$£©£®
£¨¢ñ£©ÇóÍÖÔ²µÄ·½³Ì£»
£¨¢ò£©ÈôÖ±Ïßl£ºy=kx+m£¨k£¬mΪ³£Êý£¬k¡Ù0£©ÓëÍÖÔ²¦£½»ÓÚ²»Í¬µÄÁ½µãMºÍN£®
£¨i£©µ±Ö±Ïßl¹ýE£¨1£¬0£©£¬ÇÒ$\overrightarrow{EM}$+2$\overrightarrow{EN}$=$\overrightarrow 0$ʱ£¬ÇóÖ±ÏßlµÄ·½³Ì£»
£¨ii£©µ±×ø±êÔ­µãOµ½Ö±ÏßlµÄ¾àÀëΪ$\frac{{\sqrt{3}}}{2}$ʱ£¬Çó¡÷MONÃæ»ýµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸