精英家教网 > 高中数学 > 题目详情
12.求值:$sin[{arccos({-\frac{2}{3}})}]$=$\frac{\sqrt{5}}{3}$.

分析 利用反三角函数的定义、同角三角函数的基本关系求得sin[arccos(-$\frac{2}{3}$)]的值.

解答 解:由题意,sin[arccos(-$\frac{2}{3}$)]=$\sqrt{1-co{s}^{2}[arccos(-\frac{2}{3})]}$=$\frac{\sqrt{5}}{3}$.
故答案为:$\frac{\sqrt{5}}{3}$.

点评 本题主要考查反三角函数的定义,同角三角函数的基本关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.已知数列{an}为等比数列,Sn是它的前n项和,设Tn=S1+S2+…+Sn,若a2•a3=2a1,且a4与2a7的等差中项为$\frac{5}{4}$,则T4=98.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知等比数列{an}中,a1=64,公比q≠1,a2,a3,a4又分别是某个等差数列的第7项,第3项,第1项.
(1)求an
(2)设bn=log2an,求数列{|bn|}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,若该几何体的各个顶点在某一个球面上,则该球面的表面积为48π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知曲线C由抛物线y2=8x及其准线组成,则曲线C与圆(x+3)2+y2=16的交点的个数为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知方程${x^2}+3\sqrt{3}x+4=0$有两个实根x1,x2,记α=arctanx1,β=arctanx2,求α+β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某市司法部门为了宣传《宪法》举办法律知识问答活动,随机对该市18~68岁的人群抽取一个容量为n的样本,并将样本数据分成五组:[18,28),[28,38),[38,48),[48,58),[58,68],再将其按从左到右的顺序分别编号为第1组,第2组,…,第5组,绘制了样本的频率分布直方图;并对回答问题情况进行统计后,结果如下表所示.
组号分组回答正确的人数回答正确
的人数占本
组的比例
第1组[18,28)50.5
第2组[28,38)18a
第3组[38,48)270.9
第4组[48,58)x0.36
第5组[58,68]30.2
(Ⅰ)分别求出a,x的值;
(Ⅱ)第2,3,4组回答正确的人中用分层抽样方法抽取6人,则第2,3,4组每组应各抽取多少人?
(III)在( II)的前提下,决定在所抽取的6人中随机抽取2人颁发幸运奖,求所抽取的人中第2组至少有1人获得幸运奖的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,ABCD是边长为3的正方形,ABEF是矩形,平面ABCD⊥平面ABEF,G为EC的中点.
(Ⅰ)求证:AC∥平面BFG;
(Ⅱ)若三棱锥C-DGB的体积为$\frac{9}{4}$,求三棱柱ADF-BCE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在直角坐标系xoy中,以原点为极点,x轴的正半轴为极轴建立极坐标系.已知曲线 $C:\frac{x^2}{4}+{y^2}=1$,直线l的极坐标方程为$2ρcos(θ-\frac{π}{3})=1$.
(1)写出曲线C的参数方程及直线l的普通方程;
(2)设曲线C的左顶点为A,直线l与x轴的交点为B,动点P在曲线C上运动,求|PA|2+|PB|2的取值范围.

查看答案和解析>>

同步练习册答案