精英家教网 > 高中数学 > 题目详情
17.已知方程${x^2}+3\sqrt{3}x+4=0$有两个实根x1,x2,记α=arctanx1,β=arctanx2,求α+β的值.

分析 由条件利用韦达定理求得x1+x2 =-3$\sqrt{3}$,x1•x2=4,α+β∈(0,π),再利用两角和的正切公式求得tan(α+β)的值,可得α+β的值.

解答 解:由x1、x2是方程x2+3$\sqrt{3}$x+4=0的两根,可得x1+x2 =-3$\sqrt{3}$,x1•x2=4,
故x1、x2均大于零,故arctanx1+arctanx2∈(0,π),即α+β∈(0,π),
∵α=arctanx1,β=arctanx2
∴tanα=x1,tanβ=x2
∴tan(α+β)=$\frac{{x}_{1}+{x}_{2}}{1-{x}_{1}{x}_{2}}$=$\sqrt{3}$,
∴α+β=$\frac{π}{3}$.

点评 本题主要考查韦达定理,两角和的正切公式,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.用g(n)表示自然数n的所有因数中最大的那个奇数,例如:9的因数有1,3,9,则g(9)=9,;10的因数有1,2,5,10,g(10)=5;那么g(1)+g(2)+g(3)+…+g(22016-1)=$\frac{4}{3}$×42015-$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若x,y满足$\left\{\begin{array}{l}{1<x<6}\\{2<y<8}\end{array}\right.$,则$\frac{x}{y}$的取值范围是$(\frac{1}{8},3)$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知定义在R上的奇函数f(x)在[0,+∞)上递减,若f(x3-2x+a)<f(x+1)对x∈[-1,2]恒成立,则a的取值范围为(  )
A.(-3,+∞)B.(-∞,-3)C.(3,+∞)D.(-∞,3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.求值:$sin[{arccos({-\frac{2}{3}})}]$=$\frac{\sqrt{5}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知二次函数y=a(a+1)x2-(2a+1)x+1,当a=1,2,3,…,n,…时,其抛物线在x轴上截得线段长依次为d1,d2,…,dn,…,则$\underset{lim}{n→∞}$(d1+d2+…+dn)=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.正实数x,y满足2x+y=2,则$x+\sqrt{{x^2}+{y^2}}$的最小值$\frac{8}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,四棱锥P-ABCD中,PB⊥底面ABCD,CD⊥PD,底面ABCD为直角梯形,AD∥BC,AB⊥BC,AB=AD=PB=3,点E在棱PA上,且PE=2EA.
(Ⅰ)求证:PC∥平面EBD;
(Ⅱ)求点A到平面BED的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知某几何体的三视图如图所示,则该几何体的内切球的表面积为(  )
A.$\frac{2π}{3}$B.$\frac{4π}{3}$C.D.

查看答案和解析>>

同步练习册答案