| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
分析 当a=n时,y=n(n+1)x2-(2n+1)x+1,运用韦达定理得dn=|x1-x2|=$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=$\sqrt{\frac{(2n+1)^{2}}{{n}^{2}(n+1)^{2}}-\frac{4}{n(n+1)}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,运用裂项相消求和可得d1+d2+…+dn.由此能求出$\underset{lim}{n→∞}$(d1+d2+…+dn).
解答 解:当a=n时,y=n(n+1)x2-(2n+1)x+1,
由n(n+1)x2-(2n+1)x+1=0,
可得x1+x2=$\frac{2n+1}{n(n+1)}$,x1x2=$\frac{1}{n(n+1)}$,
由dn=|x1-x2|=$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=$\sqrt{\frac{(2n+1)^{2}}{{n}^{2}(n+1)^{2}}-\frac{4}{n(n+1)}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,
∴d1+d2+…+dn=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{4}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$=1-$\frac{1}{n+1}$.
∴$\underset{lim}{n→∞}$(d1+d2+…+dn)=$\underset{lim}{n→∞}$(1-$\frac{1}{n+1}$)=1.
故选:A.
点评 本题考查函数的极限的运算,解题时要认真审题,注意裂项求和公式的合理运用,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{42}}}{6}$ | B. | $\frac{{\sqrt{30}}}{5}$ | C. | $\frac{{\sqrt{5}}}{2}$ | D. | $\frac{{2\sqrt{3}}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $1-\frac{3}{2e}$ | B. | $1-\frac{1}{2e}$ | C. | $1-\frac{2}{e}$ | D. | $1-\frac{1}{e}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -i | B. | 1 | C. | 2 | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 8π | B. | 18π | C. | 24π | D. | 8$\sqrt{6}$π |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com