精英家教网 > 高中数学 > 题目详情
如图,在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,且∠DAB=60°.侧面PAD为正三角形,其所在的平面垂直于底面ABCD,G为AD边的中点.
(1)求证:BG⊥平面PAD;
(2)求平面PBG与平面PCD所成二面角的平面角的余弦值;
(3)若E为BC边的中点,能否在棱PC上找到一点F,使平面DEF⊥平面ABCD,并证明你的结论.
考点:平面与平面垂直的判定,直线与平面垂直的判定,与二面角有关的立体几何综合题
专题:空间位置关系与距离,空间角
分析:(1)连结BD,由正三角形性质的BG⊥AD,由此能证明BG⊥平面PAD.
(2)以G为原点,建立空间直角坐标系G-xyz,由此能求出平面PBG与平面PCD所成二面角的平面角的余弦值.
(3)当F为PC的中点时,平面DEF⊥平面ABCD.取PC的中点F,连结DE,EF,DF,CG,且DE与CG相交于H,由已知条件得四边形CDGE为平行四边形,由此能证明平面DEF⊥平面ABCD.
解答: (本小题满分14分)
(1)证明:连结BD.
因为ABCD为棱形,且∠DAB=60°,
所以△ABD为正三角形.(1分)
又G为AD的中点,所以BG⊥AD.(2分)
又平面PAD⊥平面ABCD,
平面PAD∩平面ABCD=AD,(3分)
∴BG⊥平面PAD.(4分)
(2)解:∵△PAD为正三角形,G为AD的中点,∴PG⊥AD.
∵PG?平面PAD,由(1)得:PG⊥GB.又由(1)知BG⊥AD.
∴PG、BG、AD两两垂直.(5分)
故以G为原点,建立如图所示空间直角坐标系G-xyz,
PG=PDcos30°=
3
GB=ABsin60°=
3
,(6分)
所以G(0,0,0),D(0,1,0),P(0,0,
3
)
C(
3
,2,0)
PD
=(0,1,-
3
)
PC
=(
3
,2,-
3
)
(7分)
设平面PCD的法向量为
n
=(x,y,z)

n
PD
=0
n
PC
=0
,即
y-
3
z=0
3
x+2y-
3
z=0

令z=1,则x=-1,y=
3
,∴
n
=(-1,
3
,1)
,(8分)
又平面PBG的法向量为
AD
=(0,2,0),(9分)
设平面PBG与平面PCD所成二面角的平面角为θ,则
cosθ =
n
AD
|
n
|•|
AD
|
=
2
3
2
5
=
15
5

即平面PBG与平面PCD所成二面角的平面角的余弦值为
15
5
.(10分)
(3)当F为PC的中点时,平面DEF⊥平面ABCD.(11分)
取PC的中点F,连结DE,EF,DF,CG,且DE与CG相交于H.
因为E、G分别为BC、AD的中点,
∴四边形CDGE为平行四边形,
∴H为CG的中点.又F为CP的中点,∴FH∥PG.(12分)
由(2),得PG⊥平面ABCD,∴FH⊥平面ABCD.(13分)
又FH?平面DEF,∴平面DEF⊥平面ABCD.(14分)
点评:本题考查直线与平面垂直的证明,考查二面角的余弦值的求法,考查平面与平面垂直的证明,解题时要认真审题,注意向量法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

以下三个命题中:
①从匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分分层抽样;
②两个随机变量的线性相关性越强,则相关系数的绝对值越接近于1;
③在某项测量中,测量结果ξ服从正态分布N(1,σ2)(σ>0).若ξ在(0,1)内取值的概率为0.4,则ξ在(0,2)内取值的概率为0.8.
其中真命题的个数为(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

若点P(x,y)在椭圆
x2
4
+
y2
3
=1上,则x的范围是(  )
A、[-4,4]
B、[-2,2]
C、[-3,3]
D、[-
3
3
]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax+x2-xlna(a>1).
(Ⅰ)求证:函数f(x)在(0,+∞)上单调递增;
(Ⅱ)若函数y=|f(x)-log
1
2
b|-3有四个零点,求b的取值范围
(Ⅲ)若对于任意的x1,x2∈[-1,1]时,都有|f(x1)-f(x2)|≤e2-2(e是自然对数的底数),求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)如图①、②、③、④为四个平面图,数一数,每个平面图各有多少个顶点?多少条边?它们把平面分成了多少个区域?请将结果填入下表中:

顶点边数区域数
(2)观察上表,推断一个平面图形的顶点数V,边数E,区域数F之间有什么关系;
(3)现已知某个平面图形有999个顶点,且围成了999个区域,试根据以上关系确定这个平面图形的边数.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的一个焦点是F(1,0),O为坐标原点.
(Ⅰ)若椭圆短轴的两个三等分点与一个焦点构成正三角形,求椭圆的方程;
(文)(Ⅱ)在(Ⅰ)的条件下,设过点F且斜率不为0的直线交椭圆C于A、B两点,试问X轴上是否存在定点P,使PF平分∠APB?若存在,求出点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tanα=-3,且α是第二象限的角,
(1)求sinα,cosα的值;
(2)求sin(2α-
π
6
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

A,B是焦点为F的抛物线y2=4x上的两动点,线段AB的中点M在直线x=t(t>0)上.
(1)当t=1时,求|FA|+|FB|的值.
(2)当M(2,2)时,求直线AB的方程.
(3)记|AB|的最大值为g(t),求g(t).

查看答案和解析>>

科目:高中数学 来源: 题型:

正方体ABCD-A1B1C1D1中,点E在棱CD上.
(Ⅰ)求证:EB1⊥AD1
(Ⅱ)若E是CD中点,求EB1与平面AD1E所成的角.

查看答案和解析>>

同步练习册答案