精英家教网 > 高中数学 > 题目详情
5.已知椭圆C1:$\frac{x^2}{16}+\frac{y^2}{4}$=1,直线l1:y=kx+m(m>0)与圆C2:(x-1)2+y2=1相切且与椭圆C1交于A,B两点.
(Ⅰ)若线段AB中点的横坐标为$\frac{4}{3}$,求m的值;
(Ⅱ)过原点O作l1的平行线l2交椭圆于C,D两点,设|AB|=λ|CD|,求λ的最小值.

分析 (Ⅰ)将直线l1:y=kx+m代入椭圆方程,消去y,可得x的方程,运用韦达定理和判别式大于0,再由中点坐标公式,直线和圆相切的条件:d=r,解方程可得m的值;
(Ⅱ)运用弦长公式可得|AB|,把l2:y=kx代入椭圆方程求得CD的长,可得λ=$\frac{|AB|}{|CD|}$,化简整理,由二次函数的最值求法,即可得到最小值.

解答 解:(Ⅰ)l1:y=kx+m代入${C_1}:\frac{x^2}{16}+\frac{y^2}{4}=1$,
得(1+4k2)x2+8kmx+4(m2-4)=0,
△=64k2m2-16(1+4k2)(m2-4)>0恒成立,化为4+16k2>m2
设A(x1,y1),B(x2,y2),
则$\left\{{\begin{array}{l}{{x_1}+{x_2}=-\frac{8km}{{1+4{k^2}}}}\\{{x_1}{x_2}=\frac{{4({m^2}-4)}}{{1+4{k^2}}}}\end{array}}\right.$,所以$-\frac{4km}{{1+4{k^2}}}=\frac{4}{3}$①,
又$d=\frac{|k+m|}{{\sqrt{1+{k^2}}}}=1$,得$k=\frac{{1-{m^2}}}{2m}$②,联立①②得m4-m2-2=0,
解得$m=\sqrt{2}$.
(Ⅱ)由(Ⅰ)得$|{x_1}-{x_2}|=\frac{{4\sqrt{16{k^2}-{m^2}+4}}}{{1+4{k^2}}}$,
所以$|AB|=\sqrt{1+{k^2}}•\frac{{4\sqrt{16{k^2}-{m^2}+4}}}{{1+4{k^2}}}$,
把l2:y=kx代入${C_1}:\frac{x^2}{16}+\frac{y^2}{4}=1$,
得${x^2}=\frac{16}{{1+4{k^2}}}$,所以$|CD|=\sqrt{1+{k^2}}•\frac{8}{{\sqrt{1+4{k^2}}}}$,
可得$λ=\frac{|AB|}{|CD|}=\frac{{\sqrt{16{k^2}-{m^2}+4}}}{{2\sqrt{1+4{k^2}}}}=\frac{1}{2}\sqrt{4-\frac{m^2}{{1+4{k^2}}}}$
=$\frac{1}{2}\sqrt{4-\frac{m^2}{{1+4{{(\frac{{1-{m^2}}}{2m})}^2}}}}$=$\frac{1}{2}\sqrt{4-\frac{m^4}{{{m^4}-{m^2}+1}}}=\frac{1}{2}\sqrt{4-\frac{1}{{{{(\frac{1}{m^2}-\frac{1}{2})}^2}+\frac{3}{4}}}}≥\frac{{\sqrt{6}}}{3}$,
当$m=\sqrt{2},k=-\frac{{\sqrt{2}}}{4}$,λ取最小值$\frac{{\sqrt{6}}}{3}$.

点评 本题考查直线与椭圆方程联立,运用韦达定理和中点坐标公式,以及直线和圆相切的条件:d=r,同时考查弦长公式的运用,以及二次函数的最值求法,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.抛物线x2=4y上一点P到焦点的距离为3,则点P到y轴的距离为(  )
A.2$\sqrt{2}$B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.德国数学家科拉茨1937年提出了一个著名的猜想:任给一个正整数n,如果n是偶数,就将它减半(即$\frac{n}{2}$);如果n是奇数,则将它乘3加1(即3n+1),不断重复这样的运算,经过有限步后,一定可以得到1.对于科拉茨猜想,目前谁也不能证明,也不能否定,现在请你研究:如果对正整数n(首项)按照上述规则施行变换后的第8项为1(注:1可以多次出现),则n的所有不同值的个数为(  )
A.4B.6C.32D.128

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设n∈N*,求证:$\frac{1}{9}$+$\frac{1}{25}$+…+$\frac{1}{(2n+1)^{2}}$<$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.证明:
(1)x>0时,lnx≤x-1;
(2)x>1时$\frac{x-1}{lnx}$>$\frac{cosx}{sinx+\sqrt{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知抛物线的顶点在原点,对称轴为x轴,焦点在直线3x-4y-12=0上,那么抛物线通径长是16.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.过抛物线y2=2px(p>0)的焦点F且倾斜角为120°的直线l与抛物线在第一、四象限分别交于A、B两点,则$\frac{|AF|}{|BF|}$的值等于(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{3}{4}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若a=50.2,b=logπ3,c=log5sin$\frac{{\sqrt{3}}}{2}$π,则(  )
A.b>c>aB.b>a>cC.a>b>cD.c>a>b

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设a,b,c∈R+,求$\frac{a}{3b+c}$+$\frac{b}{c+2a}$+$\frac{c}{2a+3b}$的最小值$\frac{\sqrt{6}}{6}$+$\frac{\sqrt{3}}{3}$+$\frac{\sqrt{2}}{2}$-$\frac{7}{6}$.

查看答案和解析>>

同步练习册答案