精英家教网 > 高中数学 > 题目详情
15.抛物线x2=4y上一点P到焦点的距离为3,则点P到y轴的距离为(  )
A.2$\sqrt{2}$B.1C.2D.3

分析 先根据抛物线方程求得焦点坐标及准线方程,进而根据抛物线的定义可知点p到焦点的距离与到准线的距离相等,进而推断出yp+1=2,求得yp,代入抛物线方程即可求得点p的横坐标即可.

解答 解:根据抛物线方程可求得焦点坐标为(0,1),准线方程为y=-1,
根据抛物线定义,
∴yp+1=3,
解得yp=2,代入抛物线方程求得x=±2$\sqrt{2}$,
∴点P到y轴的距离为:2$\sqrt{2}$.
故选:A.

点评 本题主要考查抛物线的定义:抛物线上的点到焦点距离与到准线距离相等,常可用来解决涉及抛物线焦点的直线或焦点弦的问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.已知a,b,c分别是△ABC的角A,B,C所对的边,且c=2,C=$\frac{π}{3}$,若sinC+sin(B-A)=2sin2A,则A=$\frac{π}{2}$或$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,四边形ABCD为菱形,ACFE为平行四边形,且平面ACFE⊥平面ABCD,设BD与AC相交于点G,H为FG的中点.
(1)证明:BD⊥CH;
(2)若$AB=BD=2,AE=\sqrt{3},CH=\frac{{\sqrt{3}}}{2}$;
①求三棱锥F-BDC的体积.
②求二面角B-DF-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.抛物线x2=-8y的焦点坐标为(0,-2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设A、B是焦点为F(1,0)的抛物线y2=2px(p>0)上异于坐标原点的两点,若$\overrightarrow{OA}$?$\overrightarrow{OB}$=0,则坐标原点O(0,0)到直线AB距离的最大值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,直线l:y=x+b与抛物线C:x2=4y相切于点A.
(1)求实数b的值;
(2)求以点A为圆心,且与抛物线C的准线相切的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.抛物线y2=2px(p>0)上的动点Q到焦点的距离的最小值为$\frac{3}{2}$,则p=(  )
A.$\frac{1}{2}$B.2C.$\frac{3}{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设抛物线y2=4x的焦点为F,过点M(2,0)的直线与抛物线相交于A,B两点,与抛物线的准线相交于点C,$|{BF}|=\frac{3}{2}$,则$\frac{{|{BC}|}}{{|{AC}|}}$=(  )
A.1:4B.1:5C.1:7D.1:6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆C1:$\frac{x^2}{16}+\frac{y^2}{4}$=1,直线l1:y=kx+m(m>0)与圆C2:(x-1)2+y2=1相切且与椭圆C1交于A,B两点.
(Ⅰ)若线段AB中点的横坐标为$\frac{4}{3}$,求m的值;
(Ⅱ)过原点O作l1的平行线l2交椭圆于C,D两点,设|AB|=λ|CD|,求λ的最小值.

查看答案和解析>>

同步练习册答案