精英家教网 > 高中数学 > 题目详情
已知复数z=cosθ+isinθ(0≤θ<π),则使z2=-1的θ的值为(  )
A、0
B、
π
4
C、
π
2
D、
4
考点:复数代数形式的乘除运算
专题:数系的扩充和复数
分析:利用棣模佛定理和复数相等即可得出.
解答: 解:∵复数z=cosθ+isinθ(0≤θ<π),
∴z2=cos2θ+isin2θ=-1,
cos2θ=-1
sin2θ=0
,及0≤θ<π),解得θ=
π
2

故选;C.
点评:本题考查了棣模佛定理和复数相等,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知关于x的不等式(x-1)2>ax2有且仅有三个整数解,则实数a的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
x+1
x2+2x+1
x≥0
x<0
的图象和函数g(x)=ex的图象的交点个数是(  )
A、4B、3C、2D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

以椭圆
x2
8
+
y2
5
=1的焦点为顶点,以椭圆的顶点为焦点的双曲线的渐近线方程为(  )
A、y=±
3
5
x
B、y=±
5
3
x
C、y=±
15
5
x
D、y=±
15
3
x

查看答案和解析>>

科目:高中数学 来源: 题型:

角2013°的弧度表示为(  )
A、
11
60
π
B、
671
60
π
C、
671
120
π
D、
11
120
π

查看答案和解析>>

科目:高中数学 来源: 题型:

若向量
OA
=(1,-3),|
OA
|=|
OB
|,
OA
OB
=0,则|
AB
|=(  )
A、2
2
B、6
2
C、2
5
D、
5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x>0,y>0,且
2
x
+
1
y
=1,若x+2y>m2+2m恒成立,则实数m的取值范围是(  )
A、-4<m<2
B、-2<m<4
C、m≥4或m≤-2
D、m≥2或m≤-4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l和双曲线
x2
9
-
y2
4
=1相交于A、B两点,线段AB的中点为M(与坐标原点O不重合),设直线l的斜率为k1(k1≠0),直线OM的斜率为k2,则k1k2=(  )
A、
2
3
B、-
2
3
C、-
4
9
D、
4
9

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正方体的棱长为2,在正方体的外接球内任取一点,则该点落在正方体内的概率为(  )
A、
2
B、
2
3
C、
3
π
D、
1

查看答案和解析>>

同步练习册答案