分析 (1)已知等式两边平方后整理可解得cosA=$\frac{1}{2}$,而由已知及余弦定理可得 $\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{m}{2}$,从而解得m的值.
(2)由(1)可求得sinA=$\frac{\sqrt{3}}{2}$,结合余弦定理可求得bc≤a2,即可由三角形面积公式求最大值.
解答 (本题满分为15分)
解:(1)由 2cosA=$\sqrt{4cosA-1}$,两边平方可得:4cos2A-4cosA+1=0,
解得:cosA=$\frac{1}{2}$.…4分
而a2-c2=b2-mbc可以变形为:$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{m}{2}$,
即cosA=$\frac{m}{2}$=$\frac{1}{2}$,所以m=1.…7分
(2)由(1)知cosA=$\frac{1}{2}$,则sinA=$\frac{\sqrt{3}}{2}$,又$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{1}{2}$.…9分
所以bc=b2+c2-a2≥2bc-a2,即bc≤a2…12分
故S△ABC=$\frac{1}{2}$bcsinA≤$\frac{{a}^{2}}{2}$•$\frac{\sqrt{3}}{2}$=$\sqrt{3}$.…15分
点评 本题主要考查了余弦定理,三角形面积公式的应用,考查了基本不等式的应用,属于基本知识的考查.
科目:高中数学 来源: 题型:选择题
| A. | 2$\sqrt{6}$ | B. | 3$\sqrt{2}$ | C. | $\sqrt{6}$ | D. | $\frac{3\sqrt{2}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{3}$ | B. | $\frac{\sqrt{3}}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com