精英家教网 > 高中数学 > 题目详情
15.已知关于x的方程x2+zx+1+2i=0有实根,则复数z的模的最小值为$\sqrt{2\sqrt{5}+2}$.

分析 设x=x0是方程x2+zx+1+2i=0的实数根,可求得z=-x0-$\frac{1}{{x}_{0}}$-$\frac{2}{{x}_{0}}$i,继而可得其模的解析式,应用基本不等式即可求得答案.

解答 解:设x=x0是方程x2+zx+1+2i=0的实数根,
则${{x}_{0}}^{2}$+zx0+1+2i=0,
即z=-x0-$\frac{1}{{x}_{0}}$-$\frac{2}{{x}_{0}}$i,
|z|=$\sqrt{{({-x}_{0}-\frac{1}{{x}_{0}})}^{2}{+(\frac{2}{{x}_{0}})}^{2}}$=$\sqrt{{{x}_{0}}^{2}+\frac{5}{{{x}_{0}}^{2}}+2}$≥$\sqrt{2\sqrt{5}+2}$,
当且仅当x0=±$\root{4}{5}$时,等号成立.
∴|z|的最小值为:$\sqrt{2\sqrt{5}+2}$,
故答案为:$\sqrt{2\sqrt{5}+2}$.

点评 本题考查复数代数形式的混合运算,考查复数模的应用,熟练应用基本不等式是求|z|的最小值的关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.已知x,y满足$\left\{\begin{array}{l}x≥1\\ x+y≤4\\ x-y-2≤0\end{array}\right.$,记目标函数z=2x+y的最大值为a,最小值为b,则a+b=8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x},x>0}\\{x+1,x≤0}\end{array}\right.$,$f({{{log}_2}\frac{1}{3}})的值等于$$lo{g}_{2}\frac{2}{3}$,若f(a)+f(1)=0,则实数a的值等于-3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在平行六面体ABCD-A′B′C′D′中,AB=4,AD=6,AA′=8,∠BAD=90°,∠BAA′=∠DAA′=60°,P是CC1的中点.
(Ⅰ)用$\overrightarrow{AB},\overrightarrow{AD},\overrightarrow{AA'}$表示$\overrightarrow{AP}$;
(Ⅱ)求AP的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.x∈R时,如果函数f(x)>g(x)恒成立,那么称函数f(x)是函数g(x)的“优越函数”.若函数f(x)=2x2+x+2-|2x+1|是函数g(x)=|x-m|的“优越函数”,则实数m的取值范围是$-\frac{1}{2}<m<1$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知点P(x,y)满足约束条件$\left\{\begin{array}{l}x-y+6≥0\\ x≤3\\ x+y+k≥0\end{array}\right.$,且z=2x+4y的最小值为6.
(1)常数k=-3;
(2)$\frac{y-2}{x+7}$的取值范围为[-$\frac{1}{5}$,$\frac{7}{10}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.A={x|x>0},B={x|x2-1<0},A∩B=(  )
A.{x|-1<x<1}B.{x|x>1}C.{x|x>0}D.{x|0<x<1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在平行四边形ABCD中,AB=2,BC=1,∠ABC=120°,平面ABCD内有一点P,满足AP=$\sqrt{5}$,若$\overrightarrow{AP}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AD}$(λ,μ∈R),则2λ+μ的最大值为(  )
A.$\frac{\sqrt{5}}{3}$B.$\frac{2\sqrt{15}}{3}$C.$\frac{3\sqrt{5}}{4}$D.$\frac{\sqrt{15}}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在平面直角坐标系xOy中,△ABC的顶点坐标分别为A(2,3),B(1,-3),C(-3,-1)
(I)求BC边的中线所在直线的方程;
(II)求BC边的高线所在直线的方程.

查看答案和解析>>

同步练习册答案