精英家教网 > 高中数学 > 题目详情
7.A={x|x>0},B={x|x2-1<0},A∩B=(  )
A.{x|-1<x<1}B.{x|x>1}C.{x|x>0}D.{x|0<x<1}

分析 求出B中不等式的解集确定出B,找出A与B的交集即可.

解答 解:由B中不等式解得:-1<x<1,B={x|-1<x<1},
∵A={x|x>0},
∴A∩B={x|0<x<1},
故选:D.

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.计算${({-\frac{2}{5}})^0}-\root{3}{0.064}+lg2-lg\frac{1}{5}$的结果是1.6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若函数$f(x)=a-\frac{b}{{{2^x}+1}}(a,b为常数)$是奇函数,则a,b的一组可能值为(  )
A.a=1,b=2B.a=2,b=1C.a=-1,b=2D.a=2,b=-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知关于x的方程x2+zx+1+2i=0有实根,则复数z的模的最小值为$\sqrt{2\sqrt{5}+2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知z=x+2y,其中实数x,y满足$\left\{{\begin{array}{l}{y≥x}\\{x+y≤2}\\{x≥\frac{1}{2}}\end{array}}\right.$,则z的最大值是z的最小值的$\frac{7}{3}$倍.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.不等式组$\left\{\begin{array}{l}{x+2y≥0}\\{x-3y≥0}\\{{x}^{2}+{y}^{2}≤4}\end{array}\right.$表示的平面区域的面积为(  )
A.$\frac{π}{2}$B.$\frac{3}{2}$πC.πD.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)=mex+x2+nx,{x|f(x)=0}={x|f(f(x))=0}≠∅,则m+n的值为n,n∈[0,4).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知向量$\overrightarrow{a}$=(sinωx,cosωx),$\overrightarrow{b}$=(2sinωx,2$\sqrt{3}$sinωx).函数f(x)=$\overrightarrow{a}$$•\overrightarrow{b}$+λ(x∈R)的图象关天直线x=$\frac{π}{3}$对称.且经过点($\frac{π}{4}$,$\sqrt{3}$),其中ω,λ为实数.ω∈(0,2).
(1)求f(x)的解析式:
(2)若锐角α,β满足f($\frac{α}{2}$+$\frac{π}{3}$)=$\frac{2}{7}$,f($\frac{α+β}{2}$+$\frac{π}{12}$)=$\frac{5\sqrt{3}}{7}$.求β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=2cos[ω(x+φ)](ω>0,0<φ<π).
(1)若函数f(x)图象过点(0,-2)且图象上两个对称中心A(x1,0)与B(x2,0)间最短距离为$\frac{π}{2}$,求函数f(x)解析式;
(2)若$φ=\frac{π}{2}$,函数f(x)在[-$\frac{π}{3},\frac{2π}{3}$]上单调递减,求ω的取值范围.

查看答案和解析>>

同步练习册答案