精英家教网 > 高中数学 > 题目详情
4.在平行四边形ABCD中,AB=2,BC=1,∠ABC=120°,平面ABCD内有一点P,满足AP=$\sqrt{5}$,若$\overrightarrow{AP}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AD}$(λ,μ∈R),则2λ+μ的最大值为(  )
A.$\frac{\sqrt{5}}{3}$B.$\frac{2\sqrt{15}}{3}$C.$\frac{3\sqrt{5}}{4}$D.$\frac{\sqrt{15}}{6}$

分析 可作出图形,根据题意可知λ,μ>0,根据条件对$\overrightarrow{AP}=λ\overrightarrow{AB}+μ\overrightarrow{AD}$两边平方,进行数量积的运算便可得到5=4λ2+2λμ+μ2=(2λ+μ)2-2λμ,由基本不等式即可得出2λ+μ的范围,从而便可得出2λ+μ的最大值.

解答 解:如图,依题意知,λ>0,μ>0;
根据条件,
5=${\overrightarrow{AP}}^{2}={λ}^{2}{\overrightarrow{AB}}^{2}+2λμ\overrightarrow{AB}•\overrightarrow{AD}+{μ}^{2}{\overrightarrow{AD}}^{2}$
=4λ2+2λμ+μ2
=$(2λ+μ)^{2}-2λμ≥(2λ+μ)^{2}-(\frac{2λ+μ}{2})^{2}$=$\frac{3}{4}(2λ+μ)^{2}$;
∴$(2λ+μ)^{2}≤\frac{20}{3}$;
∴$2λ+μ≤\frac{2\sqrt{15}}{3}$;
∴2λ+μ的最大值为$\frac{2\sqrt{15}}{3}$.
故选B.

点评 考查向量数量积的运算及计算公式,以及配方法的应用,基本不等式的应用,一元二次不等式的解法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=(  )
A.{x|0<x<1}B.{x|0≤x≤1}C.{x|x≤1}D.{x|x≥0}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知关于x的方程x2+zx+1+2i=0有实根,则复数z的模的最小值为$\sqrt{2\sqrt{5}+2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.不等式组$\left\{\begin{array}{l}{x+2y≥0}\\{x-3y≥0}\\{{x}^{2}+{y}^{2}≤4}\end{array}\right.$表示的平面区域的面积为(  )
A.$\frac{π}{2}$B.$\frac{3}{2}$πC.πD.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)=mex+x2+nx,{x|f(x)=0}={x|f(f(x))=0}≠∅,则m+n的值为n,n∈[0,4).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某市组织高一全体学生参加计算机操作比赛,等级分为1至10分,随机调阅了A、B两所学校各60名学生的成绩,得到样本数据如表:
B校样本数据统计表
成绩(分)12345678910
人数(个)000912219630
(Ⅰ)计算两校样本数据的均值和方差,并根据所得数据进行比较.
(Ⅱ) 记事件C为“A校学生计算机优秀成绩高于B校学生计算机优秀成绩”.假设7分或7分以上为优秀成绩,两校学生计算机成绩相互独立.根据所给样本数据,以事件发生的频率作为相应事件发生的概率,求C的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知向量$\overrightarrow{a}$=(sinωx,cosωx),$\overrightarrow{b}$=(2sinωx,2$\sqrt{3}$sinωx).函数f(x)=$\overrightarrow{a}$$•\overrightarrow{b}$+λ(x∈R)的图象关天直线x=$\frac{π}{3}$对称.且经过点($\frac{π}{4}$,$\sqrt{3}$),其中ω,λ为实数.ω∈(0,2).
(1)求f(x)的解析式:
(2)若锐角α,β满足f($\frac{α}{2}$+$\frac{π}{3}$)=$\frac{2}{7}$,f($\frac{α+β}{2}$+$\frac{π}{12}$)=$\frac{5\sqrt{3}}{7}$.求β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数y=$\sqrt{4-{x}^{2}}$的定义域是(  )
A.(-2,2)B.[-2,2]C.(-∞,-2)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知△ABC三个顶点坐标分别为A(0,0),B(4,0),C(0,3),点P是△ABC内切圆上一点.
(1)求△ABC内切圆的方程;
(2)求以PA、PB、PC为直径的三个圆的面积之和的最大值和最小值.

查看答案和解析>>

同步练习册答案