精英家教网 > 高中数学 > 题目详情
14.已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=(  )
A.{x|0<x<1}B.{x|0≤x≤1}C.{x|x≤1}D.{x|x≥0}

分析 由A与B,求出两集合的并集,根据全集U=R,求出并集的补集即可.

解答 解:∵A={x|x≤0},B={x|x≥1},
∴A∪B={x|x≤0或x≥1},
∵全集U=R,
∴∁U(A∪B)={x|0<x<1},
故选:A.

点评 此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.设f(x)在x=0处可导,且当△x→0时,$\frac{f(0-△x)-f(0)}{△x}$→1,则f′(0)=(  )
A.1B.-1C.0D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知x,y满足$\left\{\begin{array}{l}x≥1\\ x+y≤4\\ x-y-2≤0\end{array}\right.$,记目标函数z=2x+y的最大值为a,最小值为b,则a+b=8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.命题p:关于x的不等式(x-2)$\sqrt{{x}^{2}-3x+2}$≥0的解集为{x|x≥2},命题q:若函数y=kx2-kx-1的值恒小于0,则-4<k≤0,那么不正确的是(  )
A.“非p”为假命题B.“非q”为假命题C.“p或q”为真命题D.“p且q”为假命题

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知到定点M(a,0)与N(2,0)的斜率之积为$\frac{1}{2}$的点的轨迹方程为x2-2y2=4(x≠±2),则实数a的值(  )
A.2B.-2C.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.(1)计算2lg5+$\frac{2}{3}lg8+lg5•lg20+{(lg2)^2}$
(2)若${x^{\frac{1}{2}}}+{x^{-\frac{1}{2}}}=\sqrt{7}$,求$\frac{{x+{x^{-1}}}}{{{x^2}+{x^{-2}}-3}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x},x>0}\\{x+1,x≤0}\end{array}\right.$,$f({{{log}_2}\frac{1}{3}})的值等于$$lo{g}_{2}\frac{2}{3}$,若f(a)+f(1)=0,则实数a的值等于-3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在平行六面体ABCD-A′B′C′D′中,AB=4,AD=6,AA′=8,∠BAD=90°,∠BAA′=∠DAA′=60°,P是CC1的中点.
(Ⅰ)用$\overrightarrow{AB},\overrightarrow{AD},\overrightarrow{AA'}$表示$\overrightarrow{AP}$;
(Ⅱ)求AP的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在平行四边形ABCD中,AB=2,BC=1,∠ABC=120°,平面ABCD内有一点P,满足AP=$\sqrt{5}$,若$\overrightarrow{AP}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AD}$(λ,μ∈R),则2λ+μ的最大值为(  )
A.$\frac{\sqrt{5}}{3}$B.$\frac{2\sqrt{15}}{3}$C.$\frac{3\sqrt{5}}{4}$D.$\frac{\sqrt{15}}{6}$

查看答案和解析>>

同步练习册答案