精英家教网 > 高中数学 > 题目详情
19.(1)计算2lg5+$\frac{2}{3}lg8+lg5•lg20+{(lg2)^2}$
(2)若${x^{\frac{1}{2}}}+{x^{-\frac{1}{2}}}=\sqrt{7}$,求$\frac{{x+{x^{-1}}}}{{{x^2}+{x^{-2}}-3}}$的值.

分析 根据指数幂和对数的运算性质化简计算即可.

解答 (1)原式=2(lg5+lg2)+lg5(1+lg2)+(lg2)2=2+lg5+lg2(lg5+lg2)=2+lg5+lg2=2+1=3,
(2)∵${x^{\frac{1}{2}}}+{x^{-\frac{1}{2}}}=\sqrt{7}$,
∴x+x-1=5,
∴x2+x-2=23,
∴原式=$\frac{5}{23-3}$=$\frac{1}{4}$.

点评 本题考查了指数幂和对数的运算性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.已知等比数列{an}中,a1=$\frac{1}{2}$,S3=$\frac{3}{2}$,则公比q的值为1或-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知f(x)是定义在R上的奇函数,当x≥0时,$f(x)=\sqrt{x}$
(1)求f(9)和f(-4);
(2)求f(x)的解析式;
(3)当x∈A时,f(x)∈[-7,3],求区间A.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知两点A(0,-1),B(0,1),P(x,y)是曲线C上一动点,直线PA、PB斜率的平方差为1.
(1)求曲线C的方程;
(2)E(x1,y1),F(x2,y2)是曲线C上不同的两点,Q(2,3)是线段EF的中点,线段EF的垂直平分线交曲线C于G,H两点,问E,F,G,H是否共圆?若共圆,求圆的标准方程;若不共圆,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=(  )
A.{x|0<x<1}B.{x|0≤x≤1}C.{x|x≤1}D.{x|x≥0}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.集合A={0,|x|},B={1,0,-1},若A⊆B,则x=±1;A∪B={-1,0,1};∁BA={-1}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.满足{0,1}⊆P⊆{0,1,2,3,4,5}的集合P的个数是16.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知集合A={x|-1≤x≤6},B={x|m+1≤x≤3m-1}.
(1)若B⊆A,求实数m的取值集合C;
(2)求函数f(x)=x2-2ax+3,x∈C的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某市组织高一全体学生参加计算机操作比赛,等级分为1至10分,随机调阅了A、B两所学校各60名学生的成绩,得到样本数据如表:
B校样本数据统计表
成绩(分)12345678910
人数(个)000912219630
(Ⅰ)计算两校样本数据的均值和方差,并根据所得数据进行比较.
(Ⅱ) 记事件C为“A校学生计算机优秀成绩高于B校学生计算机优秀成绩”.假设7分或7分以上为优秀成绩,两校学生计算机成绩相互独立.根据所给样本数据,以事件发生的频率作为相应事件发生的概率,求C的概率.

查看答案和解析>>

同步练习册答案