精英家教网 > 高中数学 > 题目详情
4.一个几何体的三视图如所示,则该几何体的体积是(  )
A.$\frac{2}{3}$π+4B.2π+4C.π+4D.π+2

分析 几何体为半圆柱与长方体的组合体.

解答 解:由三视图可知几何体为半圆柱与长方体的组合体.
半圆柱的底面半径为1,高为2,长方体的棱长分别为1,2,2.
所以几何体的体积V=$\frac{1}{2}×π×{1}^{2}×2$+1×2×2=π+4.
故选:C.

点评 本题考查了常见几何体的三视图和体积计算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.对某产品1至6月份销售量及其价格进行调查,其售价x和销售量y之间的一组数据如下表所示:
月份i123456
单价xi(元)99.51010.5118
销售量yi(件)111086514
(Ⅰ)根据1至5月份的数据,求出y关于x的回归直线方程;
(Ⅱ)若由回归直线方程得到的估计数据与剩下的检验数据的误差不超过0.5元,则认为所得到的回归直线方程是理想的,试问所得回归直线方程是否理想?
(Ⅲ)预计在今后的销售中,销售量与单价仍然服从(Ⅰ)中的关系,且该产品的成本是2.5元/件,为获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本).
参考公式:回归方程$\hat y=\hat bx+\hat a$,其中$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$.参考数据:$\sum_{i=1}^5{{x_i}{y_i}=392}$,$\sum_{i=1}^5{x_i^2}=502.5$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60°,且|$\overrightarrow{a}$|=2$\sqrt{2}$,|$\overrightarrow{b}$|=$\sqrt{3}$,则$\overrightarrow{a}$•$\overrightarrow{b}$=$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.抛物线的焦点恰巧是椭圆$\frac{{x}^{2}}{6}$+$\frac{{y}^{2}}{2}$=1的右焦点,则抛物线的标准方程为y2=8x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的离心率为$\frac{{\sqrt{3}}}{2}$,$P(\sqrt{2},\frac{{\sqrt{2}}}{2})$在椭圆C上.
(Ⅰ) 求椭圆C的方程;
(Ⅱ)直线l与椭圆C交于不同的两点M、N,O为坐标原点,且kOM•kON=-$\frac{b^2}{a^2}$.
(ⅰ)求证:△OMN的面积为定值;
(ⅱ)求$\overrightarrow{OM}•\overrightarrow{ON}$的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某同学用“五点法”画函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)在某一周期内的图象时,列表并填入了部分数据,如表:
ωx+φ 0$\frac{π}{2}$  π $\frac{3π}{2}$ 2π
 x x1 $\frac{π}{3}$ x2 $\frac{7π}{3}$ x3
 y 0 $\sqrt{3}$ 0-$\sqrt{3}$ 0
(Ⅰ)根据如表求出函数f(x)的解析式;
(Ⅱ)设△ABC的三内角A,B,C的对边分别为a,b,c,且f(A)=$\sqrt{3}$,a=3,S为△ABC的面积,求S+3$\sqrt{3}$cosBcosC的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$满足$\overrightarrow{a}$∥$\overrightarrow{b}$,且$\overrightarrow{b}$•$\overrightarrow{c}$=0,则($\overrightarrow{a}$+$\overrightarrow{b}$)•$\overrightarrow{c}$=(  )
A.0B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=-x2+2,g(x)=log2|x|,则函数F(x)=f(x)•g(x)的大致图象为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=|2x-3|,g(x)=x-1.
(1)求不等式f(x)≤|g(x)|的解集;
(2)求不等式f(x)≤g(x)的解集.

查看答案和解析>>

同步练习册答案