精英家教网 > 高中数学 > 题目详情
16.若向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$满足$\overrightarrow{a}$∥$\overrightarrow{b}$,且$\overrightarrow{b}$•$\overrightarrow{c}$=0,则($\overrightarrow{a}$+$\overrightarrow{b}$)•$\overrightarrow{c}$=(  )
A.0B.2C.3D.4

分析 根据共线向量定理可得$\overrightarrow{a}$=λ$\overrightarrow{b}$,再根据向量数量积运算求解即可

解答 解:∵向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$满足$\overrightarrow{a}$∥$\overrightarrow{b}$,且$\overrightarrow{b}$•$\overrightarrow{c}$=0,
∴$\overrightarrow{a}$=λ$\overrightarrow{b}$,
∴($\overrightarrow{a}$+$\overrightarrow{b}$)•$\overrightarrow{c}$=(λ+1)$\overrightarrow{b}$•$\overrightarrow{c}$=0,
故选:A

点评 本题考查了平面向量的数量积的运算问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.某几何体的三视图如图所示,则该几何体的体积为12,表面积为36.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图所示,点F1(0,-$\sqrt{2}$),F2(0,$\sqrt{2}$),动点M到点F2的距离是4,线段MF1的中垂线交MF2于点P.当点M变化时,则动点P的轨迹方程为(  )
A.$\frac{x^2}{4}+\frac{y^2}{2}=1$B.$\frac{{y}^{2}}{4}$+$\frac{{x}^{2}}{2}$=1C.x2+y2=1D.$\frac{y^2}{4}-\frac{x^2}{2}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.一个几何体的三视图如所示,则该几何体的体积是(  )
A.$\frac{2}{3}$π+4B.2π+4C.π+4D.π+2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$,满足$\overrightarrow{a}$=(1,3),($\overrightarrow{a}$+$\overrightarrow{b}$)⊥($\overrightarrow{a}$-$\overrightarrow{b}$),则|$\overrightarrow{b}$|=$\sqrt{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知动圆过定点F(0,-1),且与直线l:y=1相切,椭圆N的对称轴为坐标轴,O点为坐标原点,F是其一个焦点,又点A(0,2)在椭圆N上.若过F的动直线m交椭圆于B,C点,交轨迹M于D,E两点,设S1为△ABC的面积,S2为△ODE的面积,令Z=S1S2,Z的最小值是9.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的离心率$e=\frac{{\sqrt{2}}}{2}$,椭圆上一点A到椭圆C两焦点的距离之和为4.
(1)求椭圆C的方程;
(2)直线l与椭圆交于A,B两点,且AB中点为$M({-1,\frac{1}{2}})$,求直线l方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若集合A=[2,3],B={x|x2-5x+6=0|,则A∩B=(  )
A.{2,3}B.C.2D.[2,3]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.函数f(x)=log2((1-a2)x2+3(1-a)x+6).
(1)若f(x)的定义域为R,求实数a的取值范围.
(2)f(x)的值域为R,求实数a的取值范围
(3)若f(x)的定义域为(-2,1),求实数a的值.

查看答案和解析>>

同步练习册答案