精英家教网 > 高中数学 > 题目详情
(本小题满分8分)
如图,正方体 的棱长是2,
(1)求正方体的外接球的表面积;
(2)求
(1)12π
(2)
(1)2R=,∴ R=,  S表面积­="12π "                     ………….4分
(2)连接 A­­­­1C1,∠CA1C1为所求角 sin∠CA1C1=           …………8分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题14分)
如图,在直三棱柱中,,点在边上,
(1)求证:平面
(2)如果点的中点,求证:平面 .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知正三棱柱的各棱长都为为棱上的动点.

(Ⅰ)当时,求证:
(Ⅱ)若,求二面角的大小;              
(Ⅲ)在(Ⅱ)的条件下,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图,在棱长为a的正方体ABCD—A1B1C1D1中,E、F分别为棱AB和BC的中点,EF交BD于H。
(1)求二面角B1—EF—B的正切值;
(2)试在棱B1B上找一点M,使D1M⊥平面EFB1,并证明你的结论;
(3)求点D1到平面EFB1的距离。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,△ABC内接于圆O,AB是圆O的直径,四边形DCBE为平行
四边形,DC平面ABC ,,已知AE与平面ABC所成的角为,

(1)证明:平面ACD平面
(2)记表示三棱锥A-CBE的体积,求的表达式;
(3)当取得最大值时,求二面角D-AB-C的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在空间中,下列命题正确的个数为(  )
(1)有两组对边相等的四边形是平行四边形 (2)四边相等的四边形是菱形
(3)平行于同一条直线的两条直线平行 (4)有两边及其夹角对应相等的两个三角形全等
A. 1B. 2 C. 3D. 4

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图5所示,在正方体E是棱的中点。
(Ⅰ)求直线BE的平面所成的角的正弦值;
(II)在棱上是否存在一点F,使平面证明你的结论。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是不同的两个平面,直线,直线,条件没有公共点,条件,则
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知过球面上三点的截面与球心的距离为球半径的一半,且,则这个球的表面积等于( )
A.B.C.D.

查看答案和解析>>

同步练习册答案