精英家教网 > 高中数学 > 题目详情
9.如图所示,在正方体ABCD-A1B1C1D1中,E、F分别是AB、AD的中点,则异面直线B1C与EF所成的角的大小为(  )
A.30°B.45°C.60°D.90°

分析 以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能求出异面直线B1C与EF所成的角的大小.

解答 解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,
设正方体ABCD-A1B1C1D1中棱长为2,
则E(2,1,0),F(1,0,0),B1(2,2,2),C(0,2,0),
$\overrightarrow{{B}_{1}C}$=(-2,0,-2),$\overrightarrow{EF}$=(-1,-1,0),
设异面直线B1C与EF所成的角为θ,
则cosθ=$\frac{|\overrightarrow{{B}_{1}C}•\overrightarrow{EF}|}{|\overrightarrow{{B}_{1}C}|•|\overrightarrow{EF}|}$=$\frac{2}{\sqrt{8}•\sqrt{2}}$=$\frac{1}{2}$,
∴θ=60°.
故选:C.

点评 本题考查异面直线所成角的求法,涉及到正方体的结构特征、空间向量等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知数列{an}的首项为-1,an+1=2an+2,则数列{an}的通项公式为an=(  )
A.2n-1-2B.2n-2C.2n-1-2nD.-2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=2ax-$\frac{b}{x}$+4lnx在x=1与$x=\frac{1}{3}$处都取得极值.
(1)求a、b的值;
(2)若对x∈[$\frac{1}{e}$,e]时,f(x)≥c恒成立,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.等差数列{an}的前n项和为Sn,S7-S5=24,a3=5,则S7=(  )
A.25B.49C.15D.40

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数$f(x)=4x+\frac{a^2}{x}({x>0\;,\;\;x∈R})$在x=2时取得最小值,则实数a=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=x+$\frac{4}{x}$.
(1)判断函数f(x)的奇偶性,写出判断过程;
(2)证明f(x)在区间(0,2]是单调减函数,在区间[2,+∞)上是单调增函数;
(3)当x∈(0,+∞)时,试求函数f(x)的最大值或最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列命题中,错误的是(  )
A.圆锥所有的轴截面是全等的等腰三角形
B.圆柱的轴截面是过母线的截面中面积最大的一个
C.圆锥的轴截面是所有过顶点的界面中面积最大的一个
D.当球心到平面的距离小于球面半径时,球面与平面的交线总是一个圆

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)对任意的实数满足:f(x+3)=-$\frac{1}{f(x)}$,且当-3≤x<-1时,f(x)=-(x+2)2,当-1≤x<3时,f(x)=x,则f(1)+f(2)+f(3)+…+f(2014)=337.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若函数f(x)=sinx和$g(x)=cos(x-\frac{π}{3})$定义域均是[-π,π],则它们的图象上存在2个点关于y轴对称.

查看答案和解析>>

同步练习册答案