精英家教网 > 高中数学 > 题目详情
1.下列命题中,错误的是(  )
A.圆锥所有的轴截面是全等的等腰三角形
B.圆柱的轴截面是过母线的截面中面积最大的一个
C.圆锥的轴截面是所有过顶点的界面中面积最大的一个
D.当球心到平面的距离小于球面半径时,球面与平面的交线总是一个圆

分析 根据旋转体的结构特征进行分析判断.

解答 解:对于A,圆锥的轴截面都是以母线为腰,以底面直径为底边的等腰三角形,故A正确;
对于B,圆柱过母线的截面为矩形,一边为圆柱的高,另一边为圆柱底面圆的弦,
∴当另一半为底面直径时截面最大,故B正确;
对于C,设圆锥任意两条母线的夹角为θ,则过此两母线的截面三角形面积为$\frac{1}{2}$l2sinθ,
∴当圆锥轴截面的顶角为钝角,则当θ=$\frac{π}{2}$时,过顶点的截面中面积最大,故C错误;
对于D,球心到平面的距离小于球面半径时,球被平面分成两部分,截面为圆,故D正确.
故选C.

点评 本题考查的知识点是旋转体(圆锥、圆柱、圆台)的结构特征,熟练掌握旋转体的结构特征,是解答本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.若抛物线y2=2px的焦点与双曲线$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{1}$=1的右焦点重合,则p的值为(  )
A.2$\sqrt{10}$B.2$\sqrt{2}$C.4D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知$\vec a=(x,4),\vec b=(3,2)$,$\vec a∥\vec b,则x$=(  )
A.-6B.$-\frac{3}{8}$C.6D.$\frac{3}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图所示,在正方体ABCD-A1B1C1D1中,E、F分别是AB、AD的中点,则异面直线B1C与EF所成的角的大小为(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=ex-ax-1,(a为实数),g(x)=lnx-x
(1)讨论函数f(x)的单调区间;
(2)求函数g(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.我国南北朝时期数学家、天文学家祖暅提出了著名的祖暅原理:“幂势既同,则积不容异”.“势”即是高,“幂”即是面积.意思是说如果两等高的几何体在同高处截得两几何体的截面积相等,那么这两个几何体的体积相等.已知某不规则几何体与如图所对应的几何体满足:“幂势同”,则该不规则几何体的体积为(图中的网格纸中的小正方形的边长为1)(  )
A.4B.8C.16D.20

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=$\frac{{x}^{2}}{2e}$-ax.
(1)若a=$\frac{1}{2}$,求曲线y=f(x)在(e,f(e))处的切线方程;
(2)若关于x的不等式f(x)≥ax-$\frac{1}{2}$≥lnx-ax在(0,+∞)上恒成立,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.小王大学毕业后决定利用所学知识自主创业,在一块矩形的空地上办起了养殖场,如图所示,四边形ABCD为矩形,AB=200米,AD=200$\sqrt{3}$米,现为了养殖需要,在养殖场内要建造蓄水池,小王因地制宜,建造了一个三角形形状的蓄水池,其中顶点分别为A,E,F(E,F两点在线段BD上),且∠EAF=$\frac{π}{6}$,设∠BAE=α.
(1)请将蓄水池的面积f(α)表示为关于角α的函数形式,并写出角α的定义域;
(2)当角α为何值时,蓄水池的面积最大?并求出此最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知向量$\overrightarrow{a}$=(1,3),$\overrightarrow{b}$=(-2,1),$\overrightarrow{c}$=(3,2),若向量$\overrightarrow{c}$与向量k$\overrightarrow{a}$+$\overrightarrow{b}$垂直,则实数k=$\frac{4}{9}$.

查看答案和解析>>

同步练习册答案