精英家教网 > 高中数学 > 题目详情
11.已知向量$\overrightarrow{a}$=(1,3),$\overrightarrow{b}$=(-2,1),$\overrightarrow{c}$=(3,2),若向量$\overrightarrow{c}$与向量k$\overrightarrow{a}$+$\overrightarrow{b}$垂直,则实数k=$\frac{4}{9}$.

分析 利用向量垂直得到数量积的等式,解之即可.

解答 解:由已知得到$\overrightarrow{c}•\overrightarrow{a}$=3+6=9,$\overrightarrow{c}•\overrightarrow{b}$=-2×3+1×2=-4,
向量$\overrightarrow{c}$与向量k$\overrightarrow{a}$+$\overrightarrow{b}$垂直,
所以$\overrightarrow{c}$•(k$\overrightarrow{a}$+$\overrightarrow{b}$)=k$\overrightarrow{c}•\overrightarrow{a}$+$\overrightarrow{c}•\overrightarrow{b}$=0,得到9k-4=0,解得k=$\frac{4}{9}$;
故答案为:$\frac{4}{9}$.

点评 本题考查了平面向量垂直的性质以及数量积的坐标运算;属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.下列命题中,错误的是(  )
A.圆锥所有的轴截面是全等的等腰三角形
B.圆柱的轴截面是过母线的截面中面积最大的一个
C.圆锥的轴截面是所有过顶点的界面中面积最大的一个
D.当球心到平面的距离小于球面半径时,球面与平面的交线总是一个圆

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.斜率是1的直线与椭圆${x^2}+\frac{y^2}{4}=1$交于A、B两点,P为线段AB上的点,且AP=2PB,则点P的轨迹方程是148x2+13y2+64xy-20=0(在椭圆内).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若函数f(x)=sinx和$g(x)=cos(x-\frac{π}{3})$定义域均是[-π,π],则它们的图象上存在2个点关于y轴对称.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知正项数列{an}满足${a_{n+1}}({{a_{n+1}}-2{a_n}})=9-{a_n}^2$,若a1=1,则a10=(  )
A.27B.28C.26D.29

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a,b>0)中,若过双曲线左顶点A斜率为1的直线交右支于点B,点B在x轴上的射影恰为双曲线的右焦点F,则该双曲线的离心率为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设函数f(x)=sinx-cosx+x+1,0<x<2π,求函数f(x)的单调区间与极值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在二项式(1+x)n(n∈N*)的展开式中,存在着系数之比为5:7的相邻两项,则指数n的最小值为11.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列四个结论,正确的是(  )
①a>b,c<d⇒a-c>b-d
②a>b>0,c<d<0⇒ac>bd
 ③a>b>0⇒$\root{3}{a}$>$\root{3}{b}$
④a>b>0⇒$\frac{1}{{a}^{2}}$>$\frac{1}{{b}^{2}}$.
A.①②B.②③C.①③D.①④

查看答案和解析>>

同步练习册答案