精英家教网 > 高中数学 > 题目详情
4.已知函数$f(x)=4x+\frac{a^2}{x}({x>0\;,\;\;x∈R})$在x=2时取得最小值,则实数a=4.

分析 方法一:根据基本不等式的性质,即可求得a的值;
方法二:由对勾函数f(x)=4x+$\frac{{a}^{2}}{x}$,x>0,a2>0,当x=$\sqrt{\frac{{a}^{2}}{4}}$时,取最小值,则$\sqrt{\frac{{a}^{2}}{4}}$=2,即可求得a的值.

解答 解:方法一:由题意可知:x>0,a2>0,∴f(x)=4x+$\frac{{a}^{2}}{x}$≥2$\sqrt{4x×\frac{{a}^{2}}{x}}$=4a,
当且仅当4x=$\frac{{a}^{2}}{x}$,即x=$\frac{a}{2}$时取等号,
又∵f(x)在x=2时取得最小值,
∴$\frac{a}{2}$=2,解得a=4,
故答案为:4.
方法二:由对勾函数f(x)=4x+$\frac{{a}^{2}}{x}$,x>0,a2>0,当x=$\sqrt{\frac{{a}^{2}}{4}}$时,取最小值,则$\sqrt{\frac{{a}^{2}}{4}}$=2,
∴a=4,
故答案为:4.

点评 本题考查对勾函数的性质,基本不等式的应用,考查转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.下列各函数中,最小值为4的是(  )
A.$y=x+\frac{4}{x}$B.$y=sinx+\frac{4}{sinx}(0<x<π)$
C.y=4log3x+logx3D.y=4ex+e-x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=a-$\frac{b}{|x|}$(x≠0).
(1)若函数f(x)是(0,+∞)上的增函数,求实数b的取值范围;
(2)当b=2时,若不等式f(x)<x在区间(1,+∞)上恒成立,求实数a的取值范围;
(3)对于函数g(x)若存在区间[m,n](m<n),使x∈[m,n]时,函数g(x)的值域也是[m,n],则称g(x)是[m,n]上的闭函数.若函数f(x)是某区间上的闭函数,试探求a,b应满足的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知$\vec a=(x,4),\vec b=(3,2)$,$\vec a∥\vec b,则x$=(  )
A.-6B.$-\frac{3}{8}$C.6D.$\frac{3}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.“中国剩余定理”又称“孙子定理”.1852年英国来华传教伟烈亚利将《孙子算经》中“物不知数”问题的解法传至欧洲1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将2至2017这2016个数中能被3除余1且被5除余1的数按由小到大的顺序排成一列,构成数列{an},则此数列的项数为134.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图所示,在正方体ABCD-A1B1C1D1中,E、F分别是AB、AD的中点,则异面直线B1C与EF所成的角的大小为(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=ex-ax-1,(a为实数),g(x)=lnx-x
(1)讨论函数f(x)的单调区间;
(2)求函数g(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=$\frac{{x}^{2}}{2e}$-ax.
(1)若a=$\frac{1}{2}$,求曲线y=f(x)在(e,f(e))处的切线方程;
(2)若关于x的不等式f(x)≥ax-$\frac{1}{2}$≥lnx-ax在(0,+∞)上恒成立,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若tan(α+$\frac{π}{4}$)=2,则tanα的值等于$\frac{1}{3}$.

查看答案和解析>>

同步练习册答案