分析 (1)求得圆C的圆心,可得椭圆的c,再利用椭圆的离心率公式,建立方程,求出a,b,即可求椭圆E的方程;
(2)假设存在直线l,将直线y=-x+m代入椭圆方程,利用韦达定理,OA⊥OB,可得$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,即可求m值,即可判断存在性.
解答 解:(1)圆C:x2+y2-2$\sqrt{3}$x-1=0的圆心为($\sqrt{3}$,0),
可设椭圆方程为$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),
可得c=$\sqrt{3}$,即a2-b2=3,
又e=$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$,
解得a=2,b=1,
即有椭圆的方程为$\frac{{x}^{2}}{4}$+y2=1;
(2)假设存在斜率为-1的直线l,与椭圆交于A,B两点,且满足OA⊥OB.
设A(x1,y1),B(x2,y2)
联立$\left\{\begin{array}{l}{y=-x+m}\\{{x}^{2}+4{y}^{2}=4}\end{array}\right.$(*)可得5x2-8mx+4m2-4=0,
所以x1+x2=$\frac{8m}{5}$,x1x2=$\frac{4{m}^{2}-4}{5}$,
y1y2=(m-x1)(m-x2)=m2-m(x1+x2)+x1x2
=m2-$\frac{8}{5}$m2+$\frac{4{m}^{2}-4}{5}$=$\frac{{m}^{2}-4}{5}$,
由OA⊥OB,可得$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,
得x1x2+y1y2=0,
即为$\frac{4{m}^{2}-4}{5}$+$\frac{{m}^{2}-4}{5}$=0,
解得m=±$\frac{2\sqrt{10}}{5}$.
又方程(*)要有两个不等实根,
△=(-8m)2-20(4m2-4)>0,解得-$\sqrt{5}$<m<$\sqrt{5}$.
m的值符合上面条件,
所以存在斜率为-1的直线l的方程为y=-x±$\frac{2\sqrt{10}}{5}$.
点评 本题考查椭圆方程,考查直线与椭圆的位置关系,考查韦达定理的运用,考查学生的计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com