精英家教网 > 高中数学 > 题目详情
15.已知双曲线与椭圆$\frac{x^2}{25}+\frac{y^2}{9}=1$的焦点重合,它们的离心率之和为$\frac{14}{5}$,则双曲线的渐近线方程为(  )
A.$y=±\frac{{\sqrt{3}}}{3}x$B.$y=±\frac{5}{3}x$C.$y=±\frac{3}{5}x$D.$y=±\sqrt{3}x$

分析 求出椭圆的焦点坐标和离心率,进而求得双曲线离心率,根据离心率和焦点坐标建立方程组,求得a和b,则双曲线的渐近线方程即可.

解答 解:椭圆$\frac{x^2}{25}+\frac{y^2}{9}=1$,
焦点为(4,0),(-4,0),离心率e=$\frac{4}{5}$,
∴双曲线离心率为$\frac{14}{5}$-$\frac{4}{5}$=2,
设双曲线中c=4,可得a=2,可得b=2$\sqrt{3}$,
故双曲线的渐近线方程为:y=$±\sqrt{3}x$.
故选:D.

点评 本题主要考查了抛物线的简单性质,双曲线的渐近线方程.考查了学生对双曲线和椭圆基本知识的掌握.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.若关于x的不等式x2-2mx+1>0在[$\frac{1}{2}$,2)内恒成立,则m的取值范围(-∞,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某学校高一年级学生某次身体素质体能测试的原始成绩采用百分制,已知所有这些学生的原始成绩均分布在[50,100]内,发布成绩使用等级制.各等级划分标准见表.规定:A、B、C三级为合格等级,D为不合格等级.
百分制85以及以上70分到84分60分到69分60分以下
等级ABCD
为了解该校高一年级学生身体素质情况,从中抽取了n名学生的原始成绩作为样本进行统计.按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出频率分布直方图如图1所示,样本中分数在80分及以上的所有数据的茎叶图如图2所示.
(I)求n和频率分布直方图中的x,y的值;
(Ⅱ)根据样本估计总体的思想,以事件发生的频率作为相应事件发生的概率,若在该校高一学生中任选3人,求至少有1人成绩是合格等级的概率;
(Ⅲ)在选取的样本中,从A、C两个等级的学生中随机抽取了3名学生进行调研,记ξ表示所抽取的3名学生中为C等级的学生人数,求随机变量ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知a>c>b>0,则对$\frac{a-b}{c}$+$\frac{b-c}{a}$+$\frac{c-a}{b}$的符号判断正确的是(  )
A.只取正号B.只取负号
C.可取正号,也可取负号D.可取正号,负号,也可取零

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知x,y满足约束条件$\left\{\begin{array}{l}x-y≥0\\ x+y≤2\\ y≥0\end{array}\right.$,则z=3x-y的最大值是(  )
A.0B.2C.4D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某新建公司规定,招聘的职工须参加不小于80小时的某种技能培训才能上班.公司人事部门在招聘的职工中随机抽取200名参加这种技能培训的数据,按时间段[75,80),[80,85),[85,90),[90,95),[95,100](单位:小时)进行统计,其频率分布直方图如图所示.
(Ⅰ)求抽取的200名职工中,参加这种技能培训服务时间不少于90小时的人数,并估计从招聘职工中任意选取一人,其参加这种技能培训时间不少于90小时的概率;
(Ⅱ)从招聘职工(人数很多)中任意选取3人,记X为这3名职工中参加这种技能培训时间不少于90小时的人数.试求X的分布列和数学期望E(X)和方差D(X).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知离心率为$\frac{\sqrt{2}}{2}$的椭圆C:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{{b}^{2}}$=1(a>b>0)与圆N:x2+(y-1)2=$\frac{1}{2}$的公共弦长为$\sqrt{2}$
(1)求椭圆C的方程;
(2)若椭圆C上存在两个不同的点A,B关于过点M(-$\frac{b}{2}$,0)且不与坐标轴垂直的直线l对称,O为坐标原点,求△AOB面积的最大值,求此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在一种称为“幸运35”的福利彩票中,规定从01,02,…,35这35个号码中任选7个不同号码组成一注.并通过摇奖机从这35个号码中摇出7个不同的号码作为特等奖,与特等奖号码仅6个相同的为一等奖,仅5个相同的为二等奖,仅4个相同的为三等奖,其他的情况不得奖,为了便于计算,假定每个投注号只有1次中奖钒机(只计奖金额最大的奖).该期的每组号码均有人买,且彩票无重复号码,若每注彩票为2元,特等奖奖金为100万元/注,一等奖奖金为1万元/注,二等奖奖金为100元/注,三等奖奖金为10元/注.试求;
(1)奖金额X(元)的概率分布:;
(2)这一期彩票售完可以为福利事业筹集多少奖金?(不计发售彩票的费用).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知平面向量$\overrightarrowa$,$\overrightarrow b$满足$|{\overrightarrow a}|=2$,$|{\overrightarrow b}|=1$,$\overrightarrow a•\overrightarrow b=1$.则对于任意的实数m,$|{m\overrightarrow a+(2-4m)\overrightarrow b}|$的最小值为(  )
A.2B.1C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

同步练习册答案