精英家教网 > 高中数学 > 题目详情
7.比较下列各组数的大小;
(1)logab,logba(b>a>1);
(2)log2$\frac{1}{2}$.log2(a2+a+1)(a∈R);
(3)log0.53,log0.23.

分析 利用对数函数的单调性即可比较出大小.

解答 解:(1)logab,logba(b>a>1);
(2)∵${a}^{2}+a+1=(a+\frac{1}{2})^{2}+\frac{3}{4}$$>\frac{1}{2}$,且函数y=log2x在(0,+∞)上单调递增,
∴log2$\frac{1}{2}$<log2(a2+a+1)(a∈R);
(3)log0.53=$\frac{lg3}{lg0.5}$,log0.23=$\frac{lg3}{lg0.2}$.
∵lg0.2<lg0.5<0,
∴$\frac{1}{lg0.5}>\frac{1}{0.2}$,
∵lg3>0,
∴$\frac{lg3}{lg0.5}$>$\frac{lg3}{lg0.2}$.
∴log0.53>log0.23.

点评 本题考查了对数函数的单调性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.若抛物线x2=2py(p>0)的焦点与椭圆$\frac{x^2}{3}+\frac{y^2}{4}=1$的上焦点重合.
(1)求抛物线方程;
(2)若AB是过抛物线焦点的动弦,直线l1,l2是抛物线两条分别切于A,B的切线,证明:直线l1,l2的交点在抛物线的准线上.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.计算行列式$|\begin{array}{l}{0}&{1}&{0}&{…}&{0}\\{0}&{0}&{2}&{…}&{0}\\{?}&{?}&{?}&{\;}&{?}\\{0}&{0}&{0}&{…}&{n-1}\\{n}&{0}&{0}&{…}&{0}\end{array}|$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=(a-3)x-ax3在[-1,1]的最小值为-3,则实数a的取值范围是(  )
A.(-∞,-1]B.[12,+∞)C.[-1,12]D.$[{-\frac{3}{2},12}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在四棱锥E-ABCD中,△ABD是正三角形,△BCD是等腰三角形,∠BCD=120°,EC⊥BD.
(Ⅰ)求证:BE=DE;
(Ⅱ)若AB=2$\sqrt{3}$,AE=3$\sqrt{2}$,平面EBD⊥平面ABCD,直线AE与平面ABD所成的角为45°.
(i)试判断在线段AE是否存在点M,使得DM∥平面BEC,并说明理由;(ii)求二面角B-AE-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设F1,F2分别是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点,若双曲线右支上存在一点P使($\overrightarrow{OP}$+$\overrightarrow{O{F}_{2}}$)•$\overrightarrow{{F}_{2}P}$=0,O为坐标原点,且|$\overrightarrow{P{F}_{1}}$|=2|$\overrightarrow{P{F}_{2}}$|,则双曲线的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<$\frac{π}{2}$)的图象上在y轴右边的第一个最高点A的坐标为($\frac{π}{12}$,3),和A点相邻的一个对称中心B点的坐标为($\frac{π}{3}$,0).
(1)求f(x)的解析式;
(2)求f(x)在[0,π]上的单增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.说出下列集合的意义,A={y=x2},B={x|y=x2},C={y|y=x2},D={(x,y)|y=x2}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若AC、BD分别是夹在两个平行平面α、β间的两条线段,且AC=13,BD=15,AC、BD在平面β上的射影长的和是14,则α、β间的距离为12.

查看答案和解析>>

同步练习册答案