【题目】已知函数
.
(Ⅰ)若函数
有极值,求实数
的取值范围;
(Ⅱ)当
有两个极值点(记为
和
)时,求证:
.
【答案】解:(Ⅰ)由已知得
,且有
在方程
中, ![]()
①当
,即
时,
恒成立
此时
在
上单调递增,∴函数
无极值;
②当
,即
时,方程
有两个不相等的实数根:
, ![]()
且∵
,∴ ![]()
∵当
或
时,
;当
时, ![]()
∴函数
在
上单调递减
在
和
上单调递增.
∴函数
存在极值
综上得:当函数
存在极值时,实数
的取值范围是 ![]()
(Ⅱ)∵
,
是
的两个极值点,故满足方程 ![]()
即
,
是
的两个解,∴ ![]()
∵
![]()
而在
中, ![]()
欲证原不等式成立,只需证明 ![]()
∵
,只需证明
成立
即证
成立
令
,则 ![]()
当
时,
,函数
在
上单调递增;
当
时,
,函数
在
上单调递减;
因此
,故
,即
成立得证
【解析】(1)对于含参数的函数求出导函数,得到含参导方程,讨论方程实根得到有极值时参数a的范围。
(2)证明与极值点有关的不等式,利用极值点是导方程的实根,将a消去从而将不等式转化为不含a的不等式,再通过求导用单调性结合最值证明所得不等式。
【考点精析】根据题目的已知条件,利用函数的极值与导数的相关知识可以得到问题的答案,需要掌握求函数
的极值的方法是:(1)如果在
附近的左侧
,右侧
,那么
是极大值(2)如果在
附近的左侧
,右侧
,那么
是极小值.
科目:高中数学 来源: 题型:
【题目】从某居民区随机抽取10个家庭,获得第
个家庭的月收入
(单位:千元)与月储蓄
(单位:千元)的数据资料,算得
,
,
, ![]()
(1).求家庭的月储蓄
对月收入
的线性回归方程
;
(2).判断变量
与
之间的正相关还是负相关;
(3).若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.
附:回归直线的斜率和截距的最小二乘估计公式分别为
![]()
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将红、黑、蓝、白5张纸牌(其中白纸牌有2张)随机分发给甲、乙、丙、丁4个人,每人至少分得1张,则下列两个事件为互斥事件的是( )
A. 事件“甲分得1张白牌”与事件“乙分得1张红牌”
B. 事件“甲分得1张红牌”与事件“乙分得1张蓝牌”
C. 事件“甲分得1张白牌”与事件“乙分得2张白牌”
D. 事件“甲分得2张白牌”与事件“乙分得1张黑牌”
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义:对于函数
,若在定义域内存在实数
,满足
,则称
为“局部奇函数”.
(1)已知二次函数
,试判断
是否为定义域
上的“局部奇函数”?若是,求出所有满足
的
的值;若不是,请说明事由.
(2)若
是定义在区间
上的“局部奇函数”,求实数
的取值范围.
(3)若
为定义域
上的“局部奇函数”,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,点
是菱形
所在平面外一点,
,
是等边三角形,
,
,
是
的中点.
(Ⅰ)求证:
平面
;
(Ⅱ)求证:平面
平面
;
(Ⅲ)求直线
与平面
的所成角的大小.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l的参数方程为
为参数),以坐标原点为极点, x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为
.直线l过点
.
(1)若直线l与曲线C交于A,B两点,求
的值;
(2)求曲线C的内接矩形的周长的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“奶茶妹妹”对某时间段的奶茶销售量及其价格进行调查,统计出售价x元和销售量y杯之间的一组数据如下表所示:
价格x | 5 | 5.5 | 6.5 | 7 |
销售量y | 12 | 10 | 6 | 4 |
通过分析,发现销售量y对奶茶的价格x具有线性相关关系.
(Ⅰ)求销售量y对奶茶的价格x的回归直线方程;
(Ⅱ)欲使销售量为13杯,则价格应定为多少?
注:在回归直线y=
中,
,
=
﹣
.
=146.5.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近年来我国电子商务行业迎来发展的新机遇.2016年618期间,某购物平台的销售业绩高达516亿人民币.与此同时,相关管理部门推出了针对电商的商品和服务的评价体系.现从评价系统中选出200次成功交易,并对其评价进行统计,对商品的好评率为0.6,对服务的好评率为0.75,其中对商品和服务都做出好评的交易为80次.
(Ⅰ)先完成关于商品和服务评价的2×2列联表,再判断能否在犯错误的概率不超过0.001的前提下,认为商品好评与服务好评有关?
(Ⅱ)若将频率视为概率,某人在该购物平台上进行的3次购物中,设对商品和服务全好评的次数为随机变量X:
①求对商品和服务全好评的次数X的分布列;
②求X的数学期望和方差.
附临界值表:
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.897 | 10.828 |
K2的观测值:k=
(其中n=a+b+c+d)
关于商品和服务评价的2×2列联表:
对服务好评 | 对服务不满意 | 合计 | |
对商品好评 | a=80 |
|
|
对商品不满意 |
| d=10 |
|
合计 |
|
| n=200 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com