精英家教网 > 高中数学 > 题目详情

【题目】把函数y=cos(2x+φ)(|φ|< )的图象向左平移 个单位,得到函数y=f(x)的图象关于直线x= 对称,则φ的值为(
A.﹣
B.﹣
C.
D.

【答案】B
【解析】解:把函数y=cos(2x+φ)(|φ|< )的图象向左平移 个单位,得到函数y=f(x)=cos[2(x+ )+φ]=cos(2x+φ+ )的图象关于直线x= 对称,
则2× +φ+ =kπ,求得φ=kπ﹣ ,k∈Z,故φ=﹣
故选:B.
【考点精析】掌握函数y=Asin(ωx+φ)的图象变换是解答本题的根本,需要知道图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知x,y满足约束条件 ,若z=y﹣ax取得最大值的最优解不唯一,则实数a的值为(
A. 或﹣1
B.2或
C.2或﹣1
D.2或1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解高中生作文成绩与课外阅读量之间的关系,某研究机构随机抽取了60名高中生,通过问卷调查,得到以下数据:

0.050

0.025

0.010

0.005

0.001

k

3.841

5.024

6.635

7.879

10.828

由以上数据,计算得到K2的观测值k≈9.643,根据临界值表,以下说法正确的是(  )

A. 没有充足的理由认为课外阅读量大与作文成绩优秀有关

B. 0.5%的把握认为课外阅读量大与作文成绩优秀有关

C. 99.9%的把握认为课外阅读量大与作文成绩优秀有关

D. 99.5%的把握认为课外阅读量大与作文成绩优秀有关

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2cos2ωx+2 sinωxcosωx﹣1,且f(x)的周期为2.
(Ⅰ)当 时,求f(x)的最值;
(Ⅱ)若 ,求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(﹣1)=0,当x>0时,xf′(x)﹣f(x)<0,则使得f(x)>0成立的x的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,网格纸上小正方形的边长为1,粗线画出的是一正方体被截去一部分后所得几何体的三视图,则该几何体的表面积为(

A.54
B.162
C.54+18
D.162+18

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx=x2+alnx

1)若a=﹣1,求函数fx)的极值,并指出极大值还是极小值;

2)若a=1,求函数fx)在[1e]上的最值;

3)若a=1,求证:在区间[1+∞)上,函数fx)的图象在gx=x3的图象下方.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义域为R的函数f(x)对任意x∈R都有f(x)=f(4﹣x),且其导函数f′(x)满足(x﹣2)f′(x)>0,则当2<a<4时,有(
A.f(2a)<f(2)<f(log2a)
B.f(2)<f(2a)<f(log2a)
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区为下岗人员免费提供财会和计算机培训,以提高下岗人员的再就业能力.每名下岗人员可以选择参加一项培训、参加两项培训或不参加培训.已知参加过财会培训的有60%,参加过计算机培训的有75%,假设每个人对培训项目的选择是相互独立的,且各人的选择相互之间没有影响.

1)任选1名下岗人员,求该人参加过培训的概率;

2)任选3名下岗人员,记ξ3人中参加过培训的人数,求ξ的分布列.

查看答案和解析>>

同步练习册答案