精英家教网 > 高中数学 > 题目详情
10.已知函数g(x)=alnx-x+1,a∈R,求函数g(x)的单调区间.

分析 确定函数的定义域,利用导数的正负,可得函数g(x)的单调区间.

解答 解:∵g(x)=alnx-x+1,定义域为(0,+∞),
∴g′(x)=$\frac{a-x}{x}$,
∴a≤0,g′(x)=$\frac{a-x}{x}$<0,函数的单调减区间为(0,+∞);
a>0,g′(x)=$\frac{a-x}{x}$<0,可得x>a,g′(x)=$\frac{a-x}{x}$>0,可得0<x<a,
∴函数的单调减区间为(a,+∞);函数的单调增区间为(0,a).

点评 本题考查了利用导数研究函数的单调性,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.为检测某种零件的生产质量,检验人员需抽取同批次的零件样本进行检测并评分.若检测后评分结果大于60分的零件为合格零件,评分结果不超过40分的零件将直接被淘汰,评分结果在(40,60]内的零件可能被修复也可能被淘汰.
(I)已知200个合格零件的评分结果的频率分布直方图如图所示.请根据此频率分布直方图,估计这200个零件评分结果的平均数和中位数;
(Ⅱ)根据已有的经验,可能被修复的零件个体被修复的概率如表:
零件评分结果所在区间(40,50](50,60]
每个零件个数被修复的概率$\frac{1}{3}$$\frac{1}{2}$
假设每个零件被修复与否相互独立.现有5个零件的评分结果
为(单位:分):38,43,45,52,58,记这5个零件被修复的个数为随机变量X,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知四边形ABCD,AD=AB=BD=2,BC⊥BD,BC=$\sqrt{2}$BD,E为CD中点.现将△ABD沿BD折起,使点A到达点P,且AP=$\sqrt{6}$.
(1)求证:BC⊥PD;
(2)求平面PAE与平面PBC所成二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,在三棱柱ABC-A1B1C1中,AB⊥侧面BB1C1C,已知AA1=2,AB=$\sqrt{2}$,BC=1,∠BCC1=$\frac{π}{3}$.
(1)求证:C1B⊥平面ABC;
(2)当E点为棱CC1的中点时,求A1C1与平面A1B1E所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知不等式|x-a|<b的解集为(-2,4),求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在正方体ABCD-A1B1C1D1中,α为其六个面中的一个.点P∈α且P不在棱上,若P到异面直线AA1,CD的距离相等,则点P的轨迹可能是④.(填上所有正确的序号)
①圆的一部分②椭圆的一部分③双曲线的一部分④抛物线的一部分.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知a,b∈R,函数f(x)=$\frac{1}{3}$x3+ax2+bx.
(1)若函数f(x)的图象过点P(1,$\frac{4}{3}$),且在点P处的切线斜率是3,求a,b的值;
(2)若x=-1是函数f(x)的极大值点,且x∈[-1,2]时,f(x)的最小值为-$\frac{2}{3}$,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=mx-lnx,(m>0).
(1)若m=1,求函数f(x)的极值;
(2)求函数f(x)在区间[1,e]上的最小值;
(3)若f(x)≤0恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求下列函数的极值:f(x)=6x2-x-2.

查看答案和解析>>

同步练习册答案